Optimizing ad hoc trade in a commercial barter trade exchange

Peter Haddawy a,*, Christine Cheng b, Namthip Rujikeadkumjorn a, Khaimook Dhananaiyapergse a

a CSIM Program, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
b Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States

Received 14 April 2005; received in revised form 2 June 2005; accepted 28 June 2005
Available online 18 July 2005

Abstract

In this paper, we describe the operation of barter trade exchanges by identifying key techniques used by trade brokers to stimulate trade and satisfy member needs, and present algorithms to automate some of these techniques. In particular, we develop algorithms that emulate the practice of trade brokers by matching buyers and sellers in such a way that trade volume is maximized while the balance of trade is maintained as much as possible.

We model the trade balance problem as a minimum cost circulation problem (MCC) on a network. When the products have uniform cost or when the products can be traded in fractional units, we solve the problem exactly. Otherwise, we present a novel stochastic rounding algorithm that takes the fractional optimal solution to the trade balance problem and produces a valid integer solution. We then make use of a greedy heuristic that attempts to match buyers and sellers so that the average number of suppliers that a buyer must use to satisfy a given product need is minimized. We present results of empirical evaluation of our algorithms on test problems and on simulations built using data from an operating trade exchange.

© 2005 Elsevier B.V. All rights reserved.

Keywords: E-marketplaces; Brokering; Barter; Combinatorial optimization

1. Introduction

With the movement of business to the Internet, one of the most popular e-commerce models to emerge has been that of the B2B e-marketplace. B2B e-marketplaces are Internet based business systems that support all activities related to transactions and interactions between various companies [10]. These support services have traditionally consisted of such things as e-catalogs, search capabilities, and transaction support. More recently, researchers have sought to exploit the electronic infrastructure of e-marketplaces and the wealth of information that can be gathered in e-marketplaces to provide sophisticated methods of matching...
buyers and sellers, using agent-based, auction-based, and broker-based techniques. Of the work in this area that has addressed profitability of the e-marketplace, the overriding concern has been for maximization of single-period revenues \([6,20,15]\), with less attention paid to how the techniques fit within a more strategic business model. But as the dramatic down-turn in the e-commerce sector demonstrated, e-business initiatives require solid business models that clearly relate the services provided to the overall profitability of the company \([17]\). In this paper, we take a particular but quite general e-marketplace business model as our point of departure and use that model to motivate the development of algorithms to support management of trade among buyers and sellers.

The model used in this paper is that of the barter trade exchange, also called retail or commercial barter. A barter trade exchange is a collection of businesses that trade their goods and services, managed by an intermediary. We call the collection of businesses the barter pool and call the intermediary the trade exchange. In modern barter trade exchanges, businesses do not exchange goods directly in the bilateral fashion of traditional barter. Rather, modern barter is multilateral, using a form of private label currency. The trade exchange issues trade dollars to the member businesses and acts as a neutral third party record keeper. When a company sells a good, they receive credit in trade dollars, which they can then use to purchase goods from other members. The value of the trade dollar is tied to the US dollar by not permitting businesses to charge more for their goods in terms of trade dollars than they do in US dollars in the open market, thus preventing devaluation of the currency.

The barter industry is interesting as a test bed for market design because a barter pool is a relatively closed economy about which we have very detailed information due to the book keeping function of the trade exchange. The trade exchange maintains a general profile for every member business, as well as complete records of all transactions between members. A barter pool has many similarities with a traditional economy, with the trade exchange playing a role analogous to that of the federal government in regulating the economy. The exchange controls such variables as monetary supply, interest rate, rate of commission (analogous to revenue tax), and even supply and demand through its ability to selectively recruit new member businesses. Interestingly, although it has control over all these parameters, the trade exchange works to stimulate the barter pool economy primarily by making referrals to member businesses through trade brokers.

The success and survivability of the barter business add to its attractiveness as a model to study. The barter trade exchange industry has existed for over forty years, surviving numerous changes in the economic landscape. The International Reciprocal Trade Association \([12]\) estimated that the total value of products and services bartered by businesses through barter companies reached USD 7.87 billion in 2001. This number was an increase from USD 6.92 billion in 1999 and was the third consecutive year the industry saw over 12% growth. There were an estimated 719 trade companies active in North America in 1999 with some 471,000 client businesses \([11]\). Examples of active barter trade exchanges with a Web presence include BizXchange.com, ITEX.com, BarterCard.com, and Continental Trade Exchange (ctebarter.com).

The rest of this paper is organized as follows. In Section 2, we provide a description of the operation of barter trade exchanges, identifying key techniques used by trade brokers in order to stimulate trade and satisfy member needs. In this paper we focus on implementing techniques for maximizing single-period trade while maintaining balance of trade within the barter pool. We assume that trade is ad hoc, which means that there is no cost in switching between suppliers. In Sections 3 and 4, we present a formalization of this problem and novel efficient algorithms for its solution, using minimum cost circulations on networks and stochastic rounding techniques. In Section 5, we present empirical evaluation of our algorithms. In Section 6, we discuss related work and in Section 7, we present conclusions and directions for future work.

2. Barter trade exchange model

Given its important role in B2B commerce, there is a surprising lack of the literature on the
barter trade exchange industry. An exception is the work of Cresti [4], which examines theoretical economic rationale for development of the barter industry in industrialized countries, as well as investigating the macroeconomic variables influencing the industry in the United States [5]. But there exists no formal literature describing the barter trade exchange industry on an operational level. Our interest lies in understanding how managers and brokers in a trade exchange manage the operations of the exchange in order to maximize their company’s profits. Thus, our first step in conducting this work was to gather information through extensive interviews with industry experts and to analyze data from an operating trade exchange. We also communicated with the experts periodically to verify the assumptions behind our models. We interviewed two executives at BizXchange.com, a relatively new but rapidly growing trade exchange located in the San Francisco Bay and Seattle areas. Since its inception in January 2002, BizXchange has grown to include over 750 member businesses. The two executives we interviewed have over 28 years of combined industry experience, have founded and built several successful barter networks, and have served on the Boards of the International Reciprocal Trade Association and the National Association of Trade Exchanges. BizXchange also provided us with transaction history data.

A barter pool can be viewed as a carefully managed small-scale economy. Managers of trade exchanges attempt to recruit member businesses in such a way that supply and demand for each product category in the pool are approximately balanced.1 Member businesses are typically small to medium size enterprises that offer products and/or services. They fall into the broad categories of operating expenses, employee benefits, and travel and entertainment. Examples of typical businesses in barter trade exchanges include car rental, catering, advertising, office equipment and furniture, office supplies, dental services, health clubs, restaurants, and hotels. Henceforth we will use the term goods to refer to goods and services. It is a common misconception that the primary benefit of barter is to avoid taxes. In fact, the US Tax Equity and Fiscal Responsibility Act, passed in 1982, legislated that barter income be treated as equivalent to cash income and taxed on the same basis. A tutorial on the basics of commercial barter can be found at BarterCard.com and a collection of case studies on how businesses use and benefit from commercial barter are available at BizXchange.com.

Barter trade exchanges typically distinguish between regular and ad hoc trade.2 Regular trade represents purchase of goods that are required on a regular basis to run a business, while ad hoc trade represents purchase of goods that are not critical and that are typically purchased on a much less frequent basis. For regular trade buyers prefer to establish stable links and not to switch among suppliers, while for ad hoc trade they are much more willing to switch. Almost all the trade for which we received data from BizXchange was ad hoc.

When a business joins a trade exchange, it typically pays a membership fee. This represents a small fraction of the revenues of the trade exchange. The primary revenue is made by charging a fee to the buyer and seller on each transaction. The fee is typically in the range of 12–15%, split equally among the buyer and seller, and payable in US dollars. When a business joins the trade exchange, they are issued a line of credit in trade dollars, which permits them to make purchases without first having to sell and also gives them flexibility in conducting transactions. The trade exchange charges interest on negative balances, usually at the same rate as major credit cards. In order to give a company some control over how much of their profits are accrued in terms of trade dollars, the trade exchange permits the member to set an upper limit on the amount of trade dollars they are willing to accumulate. The credit line and upper limit define the financial operating range of the business within the barter pool.

1 Although managers attempt to keep supply and demand balanced, it is not the case that they are, in fact, balanced at any point in time. Therefore, in this paper we do not assume that supply and demand are equal or even near-equal.

2 In fact, regular and ad hoc trade represent two extremes of a spectrum.
Each member is assigned to a trade broker. A broker typically represents a set of 150–200 client businesses. The broker’s job from the standpoint of the client is to help the client sell his goods and to inform him of goods he might like to buy. The broker’s job from the standpoint of the trade exchange is to stimulate trade, since the exchange’s revenues are directly tied to trade volume. The broker stimulates trade by working to help clients spend their trade dollars when they have positive balance and generate sales when they have negative balance. The broker’s primary tool is the referral, referring potential buyers to suppliers. Note that member businesses are under no obligation to follow the broker’s referrals, but our research shows that they generally do. While the goods a business has to sell are stated explicitly, those that the business wants to buy may be explicitly stated or may be predicted by the broker based on things like the type of business and other goods that the business has purchased in the past.

In carrying out his job, the broker attempts to maximize single-period trade volume while maintaining balance of trade. Trade is balanced when the total dollar amount each member buys equals what it sells. For any supply/demand of a business there will typically be several different buyers/sellers to choose from. The question is then which of those buyers/sellers the broker should refer the business to. Most trade exchanges do not make this decision based on price; they leave price negotiation up to the members. Other factors such as convenience of location being equal, the broker maintains balance by basing his decision on the balances of the buyers/sellers. For instance, if we have one supplier who has highly positive balance and one who has highly negative balance, the broker will refer the client to the supplier with highly negative balance.

Consider the following motivating example illustrated in Fig. 1. We have six companies (A–F), each of which sells one product (P1–P4). Each company is depicted with a box, which also shows its current account balance. The arrows indicate that a company wishes to buy a certain good, with the amount shown next to the curved line. So, for example, company B would like to purchase $1000 of P3 and can purchase it from D or E or both. We would like to match the buyers and sellers so that we maximize trade, while keeping the company accounts as balanced as possible. There are many possible matchings that maximize trade volume. For example, we could have: A buys $600 from C, B buys $700 from D, F buys $100 from D, and F buys $400 from E. An alternative matching is: A buys $600 from B, B buys $800 from D, B buys $200 from E, and F buys $200 from E. Both matchings result in $1800 of trade, but the first matching results in F having a balance of $900 and B a balance of $700, while the second matching results in F having a balance of $-600 and B a balance of $-400. The second matching is, in fact, the optimal one according to our optimization criteria. By keeping the balances of B and F more positive, they have more flexibility to make purchases in the future. We chose this very simple example to highlight the basic concepts of the optimization problem. The problem becomes much more complex when we have a large number of companies each buying and selling multiple goods.

![Fig. 1. Example optimization problem with six companies.](image-url)
This concludes our description of the operation of barter trade exchanges. In the remainder of the paper we present a mathematical formalization of the problem of maximizing trade while maintaining balance and develop efficient\(^3\) algorithms for its solution. Algorithmic efficiency is important if we wish to be able to scale up to handle large real-world problems.

3. The barter universe

We assume that trade occurs in business cycles: first businesses’ supplies and demands are determined, a matching is found, the businesses act on the resulting referrals, and the cycle repeats. The matching problem can be represented by a requirements matrix in which each row represents a member business, each column represents a category of goods, and matrix entries represent quantities to buy or sell. Each business can buy and/or sell multiple goods and we make no assumptions about the relationship between supply and demand in the barter universe. We assume a uniform unit cost for barter dollars. The barter universe is specified by an \(m \times n\) matrix \(T\), where \(T_{ij}\) indicates the number of units of \(p_j\) that \(c_i\) sold or bought in the trade.

A trade set in the barter universe is specified by \(T\). Throughout this paper, we will consider maximal trade sets, which are trade sets with the largest volumes. For each \(j\), let \(S_j\) and \(N_j\) denote, respectively, the sellers and buyers of \(p_j\). If the supply of \(p_j\) exceeds its demand then a maximal trade set \(T\) will have \(T_{ij} = R_{ij}\) for all \(c_i \in S_j\). Similarly, if the supply of \(p_j\) is no more than its demand then \(T_{ij} = R_{ij}\) for all \(c_i \in N_j\). Hence, the number of units traded for each \(p_j\) is maximized, and every maximal trade set has volume equal to \(\sum_{j=1}^{n} \min\{\sum_{i \in S_j} R_{ij}, \sum_{i \in N_j} |R_{ij}|\}\). We note that it is straightforward to find a maximal trade set for \(T\) in time \(O(|P|\cdot|C|)\).

Finding the Most Balanced Maximal Trade Set.

After the trade specified by \(T\) takes place, we define the balance of \(c_i\) as \(b_i = \sum_{j=1}^{n} T_{ij}\), and the absolute balance due to \(T\) as \(ab_T = \sum_{i=1}^{m} |b_i|\). Our goal is to solve for the maximal trade set \(T^*\) that is most balanced; i.e., \(ab_T = \sum_{i=1}^{m} |b_i|\). The problem of finding the most balanced maximal trade set can be formulated as an integer program. Thus, one approach we can take is to first relax the condition that the entries of a trade set \(T\) be integers. The integer program reduces to a linear program, and the latter can be solved optimally in polynomial time. We can then use some procedure to transform a fractional solution to an integer one. We shall take a similar approach;

\(3\) Algorithm efficiency, which refers to the algorithm’s running time, should not be confused with economic efficiency.
however, instead of solving the relaxed problem as a linear program, we shall show that it can be reduced to a minimum-cost circulation (MCC) problem on an appropriate network, and that it can be solved optimally by running a bounded number of breadth-first searches because of the network’s simple structure. Then, we will present a novel randomized rounding procedure that produces an integer maximal trade set \(T' \) from a fractional trade set \(T \) so that the expected balance of a company in \(T' \) is equal to its balance in \(T \). By enforcing this constraint, we hope that \(ab_T \) will be close to \(ab_{T'} \). Our simulations indicate that the MCC solutions combined with the randomized rounding procedure are as competitive as the solutions obtained from a commercial mixed-integer programming (MIP) package. Furthermore, in all but one instance, our approach is significantly faster than the MIP package.

3.1. When maximal trade sets can be fractional

We can solve for the most balanced fractional maximal trade by first constructing a network, and then finding the minimum cost circulation on the network [1]. Let us start with the following example. There are four companies and two goods which costs $2 and $3, respectively. The requirements matrix of the example for finding the most balanced maximal trade by first constructing a network, and then finding the minimum cost circulation \(\text{value} \) of a trade set. Finally, the edge \((t,s)\) has an upper bound capacity of \(160 \times 4 = 640\) because the total balance of all the companies can never exceed this value.

For an arbitrary \(\mathcal{B} \), we shall create the network as follows. Let \(G = (V,E) \) be a directed graph where \(V = C \cup P \cup \{s,t\} \) and \(E = \{(p_j,c_i) \forall c_i \in N_j \forall j\} \cup \{(c_i,p_j) \forall c_i \in S_j \forall j\} \cup \{(s,c_i) \forall c_i \in C\} \cup \{(c_i,t) \forall c_i \in C\} \cup \{(t,s)\} \).

Let \(l:E \rightarrow \mathbb{R} \) and \(u:E \rightarrow \mathbb{R} \) denote the lower and upper bound capacities on the edges of \(G \). For each \(j \), if the supply of \(p_j \) exceeds its demand then let all edges \(e = (p_j,c_i) \), where \(c_i \in N_j \) have \(l(e) = u(e) = x_j R_{ij} \), but let all edges \(e' = (c_i,p_j) \) where \(c_i \in S_j \) have \(l(e) = 0 \) and \(u(e) = x_j R_{ji} \). The capacities are chosen because, in a fractional maximal trade set, all buyers of \(p_j \) will have to purchase all their demands for \(p_j \), but the sellers of \(p_j \) need not sell all their supplies of \(p_j \). When the supply for \(p_j \) is no more than its demand then we do the opposite. Let all edges \(e' = (c_i,p_j) \) where \(c_i \in S_j \) have \(l(e) = u(e) = x_j R_{ji} \), and let all edges \(e = (p_j,c_i) \), where \(c_i \in N_j \) have \(l(e) = 0 \) and \(u(e) = x_j R_{ij} \). Let the edges \((s,c_i)\) and \((c_i,t)\) for all \(c_i \) and \((t,s)\) have lower and upper bound capacities of 0 and \(\infty \) (or a large number), respectively. Finally, let \(\gamma:E \rightarrow \mathbb{R} \) be the cost function for the edges of \(G \). For each \(c_i \), set \(\gamma(s,c_i) = \gamma(c_i,t) = S1 \), and set all

Table 1

The requirements matrix of the example for finding the most balanced maximal trade set

<table>
<thead>
<tr>
<th></th>
<th>(p_1) ($2)</th>
<th>(p_2) ($3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>(c_2)</td>
<td>70</td>
<td>-30</td>
</tr>
<tr>
<td>(c_3)</td>
<td>-20</td>
<td>15</td>
</tr>
<tr>
<td>(c_4)</td>
<td>-10</td>
<td>-40</td>
</tr>
</tbody>
</table>
other edge costs to 0. Denote this network as \((G, l, u, \gamma)\).

A circulation \(f: E \rightarrow \mathbb{R}\) on the network assigns a flow value to each edge. We say that the circulation \(f\) is feasible if (a) for each \(e \in E, h(e) \leq f(e) \leq u(e)\) and (b) for each \(v \in V, \) the flow into \(v\) equals the flow out of \(v\). The cost of \(f\) is \(\sum_{e \in E} \gamma(e) f(e)\). The following theorem can easily be verified.

Theorem 3.1. Let \(f^*\) be a minimum cost circulation for \((G, l, u, \gamma)\). Then \(f^*\) can be transformed into \(T^*\), a most balanced fractional maximal trade set for \(\mathcal{B}\), in polynomial time.

Solving \(MCC\) in \((G, l, u, \gamma)\) efficiently. Given a network \((G, l, u, \gamma)\) and a feasible circulation \(f\) on the network, its residual network, \(R(G, f)\), has the same vertex set as \(G\). The edges also have costs (specified by \(\gamma_R\)), and upper and lower bound capacities (specified by \(u_R\) and \(l_R\)). An edge \(e\) of \(G\) is in the residual network if and only if \(f(e) < u(e)\). Furthermore, \(u_R(e) = u(e) - f(e)\), \(l_R(e) = 0\), and \(\gamma_R(e) = \gamma(e)\). The reverse of \(e\), which we shall denote as \(\bar{e}\), is in the residual network if and only if \(l(e) < f(e)\), and \(u_R(\bar{e}) = f(e) - l(e)\), \(l_R(\bar{e}) = 0\), and \(\gamma_R(\bar{e}) = -\gamma(e)\).

To solve for the \(MCC\) in \((G, l, u, \gamma)\), we make use of the minimum mean cycle-canceling algorithm. The algorithm starts with a feasible circulation \(f\). At each iteration, it finds a minimum mean (directed) cycle\(^4\) in the residual graph \(R(G, f)\). If the cycle has negative cost, then the algorithm augments \(f\) using this cycle. (Step 2 of algorithm BALANCE specifies this step precisely.) Otherwise, \(R(G, f)\) contains no negative-cost directed cycle, and the algorithm outputs \(f\), which must be an \(MCC\).

Goldberg and Tarjan [7] showed that the number of augmentations is \(O(|V| |E|)\). We note that there are other algorithms for \(MCC\) whose theoretical guarantees are better than the minimum mean cycle-canceling algorithm (e.g., see reference in [1,7]). We shall show, however, that this algorithm is very simple to implement for our network. Given a circulation \(f\) in \((G, l, u, \gamma)\), the negative-cost directed cycles in \(R(G, f)\) have a nice structure as stated by the lemma below. As a result, the search for the minimum mean cycle in \(R(G, f)\) becomes straightforward. We note that the full proof for this lemma as well as those of the remaining theorems can be found in [8].

Lemma 3.2. All negative-cost directed cycles in \(R(G, f)\) cost \(-S2\) and consist of a sequence of nodes of the form \(l, c_1, p_{j1}, c_2, p_{j2}, \ldots, p_{jk}, c_k, s\).

We are now ready to present our algorithm. BALANCE(R)

1. Find an initial maximal trade set \(T\). Construct the network \((G, l, u, \gamma)\) and the corresponding circulation \(f\) of \(T\).
2. Construct the residual graph \(R(G, f)\). Determine if \(R(G, f)\) contains a negative-cost cycle as follows. In \(R(G, f)\), remove \((t, s)\) and all the edges with a cost of \(S1\), and find the shortest path from \(t\) to \(s\) using breadth first search.
 If no such path exists, go to Step 3. Else, append the edge \((s, t)\) to the path to form a negative-cost cycle \(Y\). Augment \(f\) using \(Y\). (That is, let \(\epsilon \leftarrow \min\{|u(e) - f(e)|, \text{ for all forward edges } e \text{ on } Y\} \cup \{f(e) - l(e) \text{ for all backward edges } e \text{ on } Y\} \). For all edges \(e\) in \(Y\), if \(e\) is a forward edge, \(f(e) \leftarrow f(e) + \epsilon; \) if \(e\) is a backward edge, \(f(e) \leftarrow f(e) - \epsilon\). Repeat Step 2.
3. Construct the trade set \(T\) equivalent to the circulation \(f\). Return(T).

Theorem 3.3. BALANCE outputs a most balanced fractional maximal trade set in \(O(|V| + |E|)|V||E|\) time where \(|V| = O(|P| + |C|)\) and \(|E| = O(\sum_{j=1}^n (|S_j| + |N_j|))\).

An extended example of the algorithm can be found in [8]. We note that, in practice, \(|E|\) is likely to be small compared to \(|P| \times |C|\). BizX-change, for example, currently has approximately 750 member companies and 125 product categories. Companies typically only sell between one to three goods and buy between five to 25 goods. Furthermore, as the trade exchange grows, the number of companies grows but the number of goods remains relatively constant.
3.2. When maximal trade sets must be integral

Since the flows on the edges between the company and good nodes need not be multiples of the goods' costs, the trade set T^* in Theorem 3.1 may contain non-integer values except when all the goods have $x_j = 1$. But the maximal trade set that minimizes ab_T when $x_j = 1$ for all j also minimizes ab_T when $x_j = \alpha$, α a constant, so the statement below is true.

Theorem 3.4. Assuming all the goods in B have the same cost α, a most balanced (integer) maximal trade set can be found in $O((|N| + |E|)|V| + |E|)$ time where $|V| = O(|P| + |C|)$ and $|E| = O(\sum_{j=1}^n (|S_j| + |N_j|))$.

Rounding Fractional Maximal Trade Sets. Given a fractional maximal trade set T, we wish to transform it into an integer maximal trade set T' so that ab_T is approximately equal to ab_T. In this section, we shall try to achieve this goal by employing a randomized rounding procedure that sets each T_{ij}' equal to $\lceil T_{ij} \rceil$ or $\lfloor T_{ij} \rfloor$ so that (i) for each j, $\sum_{i=1}^m T_{ij}' = 0$ and (ii) for each i, $E[b_i'] = E(\sum_{j=1}^n x_j T_{ij}) = b_i$. In the process of rounding T, condition (i) guarantees that the number of units of p_j sold remains equal to the number of units of p_j bought, while condition (ii) states that the expected balance of each company in T' is equal to its balance in T. It is, of course, possible for $|b_i'|$ to differ significantly from $|b_i|$ so that $ab_T = \sum_{i=1}^m |b_i'|$ is much larger than $\sum_{i=1}^m |b_i| = ab_T$. We hope, however, that if we generate several integer maximal trade sets, one of them will have an absolute balance close to ab_T. First, we make the following observation.

Lemma 3.5. Let T be a fractional maximal trade set for the barter universe $B = (C, P, \alpha, R)$. Suppose T' is an integer matrix obtained by setting each T_{ij}' equal to $\lceil T_{ij} \rceil$ or $\lfloor T_{ij} \rfloor$ so that $\sum_{i=1}^m T_{ij}' = \sum_{i=1}^m T_{ij} = 0$ for each j. Then T' is an integer maximal trade set for B and $ab_{T'} \leq ab_T + m\sum_{j=1}^n x_j$.

Without loss of generality, assume that, in the jth column of the fractional maximal trade set T, exactly k entries are not integers. The fractional entries have to be all positive if the supply of p_j exceeds its demand, and all negative otherwise. For $i = 1, \ldots, m$, let $x_i = T_{ij} - \lfloor T_{ij} \rfloor$ if $T_{ij} \geq 0$, and $\lceil T_{ij} \rceil - T_{ij}$ if $T_{ij} < 0$, so that $0 \leq x_i \leq 1$. Since $\sum_{i=1}^m T_{ij} = 0$, the fractional parts of the T_{ij}'s must also sum up to an integer; i.e., $\sum_{i=1}^m x_j = z$ for some positive integer $z < k$. Setting $T_{ij}' = \lceil T_{ij} \rceil$ or $\lfloor T_{ij} \rfloor$ so that $\sum_{i=1}^m T_{ij}' = 0$ is equivalent to setting $x_i' = \lceil x_i \rceil$ or $\lfloor x_i \rfloor$ so that $\sum_{i=1}^m x_j' = z$. The latter can be done by choosing exactly z out of the k fractional x_j's, and rounding them all to 1, and rounding the remaining $k - z$ x_j's to 0. Thus, creating an integer maximal trade set T' with the properties described in the previous lemma can be done in $O(|P||C|)$ time. We would like to choose a rounding of the x_i's, however, in a randomized manner so that $\text{Prob}(x_i' = 1) = x_i$ for each i. To do so, we make use of the following lemma which is very likely known.

Lemma 3.6. Let m and z be positive integers with $z \leq m$. Let $\mathcal{V}(m,z)$ be the set of all vectors in \mathbb{R}^m that have z components equal to 1 and $m - z$ components equal to 0. (Note that $\mathcal{V}(m,z)$ contains \binom{m}{z} vectors.) Let $\bar{x} = (x_1, \ldots, x_m) \in [0,1]^m$ so that $\sum_{i=1}^m x_i = z$. Then \bar{x} can be expressed as a convex combination of the elements in $\mathcal{V}(m,z)$. That is, \bar{x} = \sum_{r \in \mathcal{V}(m,z)} \lambda_r \bar{v}_r$, so that $0 \leq \lambda_r \leq 1$ for each r, and $\sum_r \lambda_r = 1$.

In the constructive proof of Lemma 3.6 given by Volkmer [22], the convex combination of \bar{x} contains at most k vectors from $\mathcal{V}(m,z)$, where k is the number of fractional entries in \bar{x}. The construction takes $O(km)$ time. We note that $\mathcal{V}(m,z)$ contains all the possible roundings of (x_1, \ldots, x_m). Let us use the coefficients in the convex combination of \bar{x} as probabilities over the vectors in $\mathcal{V}(m,z)$. That is, for each $\bar{v}_r \in \mathcal{V}(m,z)$, define $\text{Prob}(\bar{v}_r) = \lambda_r$. Choose one vector $\bar{u} = (u_1, u_2, \ldots, u_m)$ in $\mathcal{V}(m,z)$ at random using this probability distribution. For each i, $\text{Prob}(u_i = 1) = \sum_{r \in \mathcal{V}(m,z)} \text{Prob}(\bar{v}_r) = \sum_r \lambda_r x_i = x_i$, where the last equality is true because $x_i = \sum_r \lambda_r x_r$. We are now ready to present our randomized rounding procedure.

RANDOM_ROUND(T)

For $j = 1$ to n, do:

1. For $i = 1$ to m, if $T_{ij} \geq 0$, set $x_i = T_{ij} - \lfloor T_{ij} \rfloor$.
 Else, set $x_i = \lceil T_{ij} \rceil - T_{ij}$. Set $z = \sum_{i=1}^m x_i$.
2. Express $\mathbf{x} = (x_1, \ldots, x_m) \in [0,1]^m$ as a convex combination of the vectors in $\mathcal{V}(m,z)$ using CONVEX_COMB (see Fig. 3). For each $\mathbf{v}_r \in \mathcal{V}(m,z)$, set $\operatorname{Prob}(\mathbf{v}_r)$ equal to the coefficient of \mathbf{v}_r in the convex combination of \mathbf{x}.

3. Pick one vector $\mathbf{u} \in \mathcal{V}(m,z)$ using the probability distribution in step 2. For $i = 1$ to m, if $T_{ij} \geq 0$, set $T'_{ij} = \lfloor T_{ij} \rfloor + u_i$. Else, set $T'_{ij} = \lceil T_{ij} \rceil - u_i$.

Return(T').

Theorem 3.7. RANDOM_ROUND(T) outputs an integer maximal trade set T' such that for each i and j, $E[T'_{ij}] = T_{ij}$. Thus, for each i, $E[b'_i] = b_i$, and $ab_T \leq ab_T + m\sum_{j=1}^n z_j$. The procedure runs in $O(K|C| + |P||C|)$ time where K is the number of fractional entries in T.

4. Matching buyers and sellers

Once a desirable maximal trade set T has been found, buyers and sellers for each good have to be matched, and the number of units traded between them specified. This step generates the actual referrals. We make use of a greedy heuristic...
that attempts to minimize the average number of sellers matched to a buyer per good by always matching the company with the largest supply with the company with the largest demand. Minimizing the number of sellers is important since most businesses would rather not deal with too many suppliers to fulfill a particular need.

GREEDY_MATCHING (T)

For \(j = 1 \) to \(n \), do:

1. Initialize \(S_j \leftarrow \{ c_i; T_{ij} > 0 \} \), \(N_j \leftarrow \{ c_i; T_{ij} < 0 \} \), and \(M_j \leftarrow \emptyset \).

2. While \((N_j \neq \emptyset) \), do
 - Find \(a \) and \(b \) so that \(T_{aj} = \max \{ T_{ij}; c_i \in S_j \} \) and \(T_{bj} = \min \{ T_{ij}; c_i \in N_j \} \). Let \(\epsilon \leftarrow \min \{ T_{aj}, |T_{bj}| \} \). Add \(\{(a, b, \epsilon)\} \) to \(M_j \).
 - If \(T_{aj} - \epsilon = 0 \), set \(S_j \leftarrow S_j - \{ c_a \} \). Else, set \(T_{aj} \leftarrow T_{aj} - \epsilon \). If \(|T_{bj}| - \epsilon = 0 \), set \(N_j \leftarrow N_j - \{ c_b \} \). Else, set \(T_{bj} \leftarrow T_{bj} + \epsilon \).

3. Return \((M_j) \).

It is straightforward to verify the following lemma.

Lemma 4.1. GREEDY_MATCHING outputs a valid matching for each good \(p_j \). It runs in \(O(\sum_{j=1}^{n}(|S_j| + |N_j|)^2) \) time.

5. Empirical evaluation

We performed three different sets of experiments in order to evaluate the effectiveness and efficiency of our algorithms. The experiments included: (i) evaluation of running time and solution quality on a variety of requirements matrices, (ii) comparison of trade volumes using our algorithm with those from an operating trade exchange, and (iii) evaluation of the effectiveness of our algorithm in increasing trade volume by using a simulator, where we were able to vary parameters of the barter pool.

First, we evaluated the quality of solutions and running time from the combination of our BALANCE and RANDOM_ROUND algorithms. We will refer to the combination of the two algorithms as \(B + RR \). We compared the results from \(B + RR \) to those from the LINGO commercial mixed integer programming (MIP) package (version 8.0) on 100 randomly generated matrices. All experiments were run on a 3 GHz Pentium IV machine with 1 GB of main memory. We varied two parameters: product price range and current balance range, taking uniformly distributed random values over the ranges and producing ten matrices for each combination of parameter settings. Since a barter pool represents a closed economy, the sum of the starting balances was always zero. Each matrix represented 100 companies and 50 products. This problem size was chosen because its specification was the largest file size that the MIP package would accept. Supply and demand were randomly generated in such a way that their distributions mirrored those in the BizX-change barter pool. The RANDOM_ROUND algorithm was run 10 times for each matrix and the best value was selected. Increasing the number of runs to 50 made little difference in the results. Results are shown in Table 2. For each matrix, the degree of sub-optimality of the \(B + RR \) solution was computed as the difference between the value produced by \(B + RR \) and the value produced by the MIP package, and expressed as a percentage of the range of possible values of absolute balance for that matrix. It is necessary to express the degree of sub-optimality relative to the range of possible values since a small absolute difference in solutions is more significant if the range of solutions is small than if it is large. Since we have no algorithm for exactly solving the integer problem, we had to use our best estimate of the range of possible values of the absolute balance. For the minimum value, we took the lesser of the MIP and \(B + RR \) solutions. For the maximum value, we used the MIP package, setting the objective to maximize absolute balance. Note that this approach may underestimate the width of the range but will not overestimate it since all solutions are valid but not guaranteed to be optimal. Thus, we are never overestimating the quality of the \(B + RR \) solution. Negative values for degree of sub-optimality indicate that \(B + RR \) produced a better solution than MIP. The solution from \(B + RR \) is always within 0.7% of the MIP solution, with little variance. Running times for \(B + RR \) and for the MIP package, relative running
times of the two, and the standard deviations are shown in the last five columns of the table. Running times for B + RR are the sum of the running times for BALANCE and ten runs of RANDOM ROUND. In every case but one, B + RR has significantly better running time and smaller variance in running time than MIP. To illustrate how well our algorithm scales up, we ran it on ten matrices with 1000 companies and 200 products, with product price range $10–100 and current balance $4,000–10,000. On these large problems, BALANCE took on average 68.05 sec and RANDOM_ROUND took 0.55 s, for a total running time of only 68.6 s.

For our second and third sets of experiments, we obtained 66 weeks of transaction history data from BizXchange. The data specified the buyer, seller, date, amount, and product category for each transaction. Each member business supplied only one product category. The data included each company’s credit line, which ranged from $500 to $20,000, and the company’s upper bound on balance, which ranged from $10,000 to $50,000. The number of companies started at only 4 in week one and steadily grew to 264 by week 66. The total number of transactions was 1887. The average number of suppliers per product category in which there was at least one buyer was 4.8 and the average number of buyers per category was 1.9.

The purpose of the second set of experiments was to compare trade volume following the buyer/seller matching produced by our optimizer with that in the BizXchange barter pool. Since we did not know the exact demand in a given week, we took the actual purchases companies made in a given week as representing their demand. This provided each company’s demand in the weekly requirements matrix. The supply for each company in its product category was determined by the difference between the company’s current balance and it’s upper bound. We then used the optimizer to match buyers and sellers in each week and assumed that the companies made purchases following the determined optimal matching. We did the same thing without optimization, simply randomly choosing any maximal trade set, not necessarily the most balanced one.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price range ($)</th>
<th>Current balance ($)</th>
<th>Average relative runtime of B + RR (ms)</th>
<th>Average runtime of MIP (ms)</th>
<th>Standard deviation of degree of sub-optimality of B + RR (%)</th>
<th>Standard deviation of B + RR runtime (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[10,10]</td>
<td>0</td>
<td>0.00</td>
<td>1600.00</td>
<td>0.00</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>[10,10]</td>
<td>0</td>
<td>0.01</td>
<td>1750.00</td>
<td>0.01</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>[10,100]</td>
<td>0</td>
<td>0.01</td>
<td>2600.00</td>
<td>0.01</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>[10,500]</td>
<td>0</td>
<td>0.01</td>
<td>3500.00</td>
<td>0.01</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td>[10,1000]</td>
<td>0</td>
<td>0.01</td>
<td>4000.00</td>
<td>0.01</td>
<td>10.71</td>
</tr>
<tr>
<td></td>
<td>[10,10]</td>
<td>0</td>
<td>0.14</td>
<td>1500.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,10]</td>
<td>0</td>
<td>0.14</td>
<td>1750.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,100]</td>
<td>0</td>
<td>0.14</td>
<td>2600.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,500]</td>
<td>0</td>
<td>0.14</td>
<td>3500.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,1000]</td>
<td>0</td>
<td>0.14</td>
<td>4000.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,10]</td>
<td>0</td>
<td>0.14</td>
<td>1500.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,10]</td>
<td>0</td>
<td>0.14</td>
<td>1750.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,100]</td>
<td>0</td>
<td>0.14</td>
<td>2600.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,500]</td>
<td>0</td>
<td>0.14</td>
<td>3500.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[10,1000]</td>
<td>0</td>
<td>0.14</td>
<td>4000.00</td>
<td>0.14</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2: Comparison of BALANCE + RANDOM ROUND versus mixed integer programming.
Comparison of the trade volumes in the optimized and non-optimized simulations with actual trade volumes are shown in Table 3. Comparison over the entire 66 weeks shows the optimized simulation closer to the actual trade volume than the non-optimized by 7%. Analysis of the trace of weekly trade volumes shows that the trade volumes are identical or very close for all three through week 48. (By week 48, the number of companies in the barter pool has grown to 239.) So we also compared the trade volumes over only weeks 48–66, shown in the second row. Here we see a greater difference (16%) between optimized and non-optimized trade volumes. Presumably if we had yet more data, this trend would continue. As the table shows, there is a notable difference between the actual trade volume and the trade volume of the optimized simulation. This is likely due to the fact that the trade brokers are considering more factors than balance when matching buyers and sellers, e.g., the rate at which companies tend to spend their trade dollars. It should be noted that in this simulation experiment it is not possible for the simulated trade volume to exceed the actual trade volume due to the way that demand is generated.

The third set of experiments was carried out in order to examine the effect of balance optimization with more active trading and over a longer period of time than in the transaction history data and also to see how changing the financial operating ranges of the businesses effects the outcome of optimization. Using the 66 weeks of transaction data, we built a barter pool trade simulator by learning Bayesian network models to predict company product demands. We tested a number of different models and found a naïve Bayes model to give the best results, with an average ROC predictive value over all companies of 0.82. The simulator used the Bayesian networks to generate the demand for each company in each week. Again each company sold only one product category, with supply determined by the difference between the current balance and the upper bound. We ran a number of simulations to compare the absolute balance and the trade volume with and without balance optimization. In the simulations without balance optimization, maximal trade sets were determined as in the previous experiment. Each simulation used the same set of 130 companies and 26 product categories, with 3–7 suppliers per product category. Company balances all started at zero trade dollars. Simulations were run for 100 trade cycles, each cycle being one week. To observe the effectiveness of the optimization for various financial operating ranges, we varied the credit limits and upper limits. The credit limit ranged from that given in the data (CL) to four times that value (4CL). The upper bound ranged from twice the credit limit (2CL) to eight times the credit limit (8CL). Companies were not allowed to exceed their credit limit or upper limit. As the results of the simulations displayed in Table 4 show, using the optimizer results in a reduction in the average absolute balance over companies and in an increase in trade volume. The smallest increase in trade volume is for the [CL, 2CL] case, with the difference increasing as the credit limit is held constant and the upper bound increases to 8CL. The last two rows in the table show the results for the case of the credit limit and the upper bound equal to the values in the BizXchange barter pool, i.e., a credit limit of CL and high upper bounds. This results in the largest difference between the trade volumes of optimized and non-optimized simulations: 40%. These results are not surprising since tight credit limits and high upper bounds make it easy for the companies to hit their credit limits, making maintaining balance important. Although our simulation is far from incorporating all the complexities of trade dynamics, it does strongly suggest that maintaining balance of trade helps to increase trade volume over the long run.

Table 3
Comparison of optimized and non-optimized simulations with actual trade volumes

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Actual trade volume</th>
<th>Optimized simulation</th>
<th>Non-optimized simulation</th>
<th>Increase: optimized vs non-optimized (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–66</td>
<td>$3,007,051</td>
<td>$2,573,403</td>
<td>$2,393,576</td>
<td>7</td>
</tr>
<tr>
<td>48–66</td>
<td>$1,151,853</td>
<td>$878,800</td>
<td>$740,883</td>
<td>16</td>
</tr>
</tbody>
</table>

Details of the simulator are described in a related paper [9].
6. Related work

Segev and Beam [19] point out that while there exists a large body of the literature on auction theory, there is no equivalent theory for brokered marketplaces. They examine the effect of search costs on brokerage costs where negotiation is only on price. Their model assumes a single commodity where each seller has one unit and each buyer desires one unit and supply equals demand. They assume a single broker who receives bids from buyers and asks from sellers, each consisting of a single price point. The broker matches buyers and sellers by finding a seller whose asking price is below the bid of a buyer. Through simulation, they examine combinations of search and brokerage cost that make use of the broker a more attractive option than direct searching.

Dailianas et al. [6] present algorithms for matching buyers and sellers in e-marketplaces for trading soft composable commodities such as bandwidth. Each seller submits one or more offer curves indicating the price per unit for various quantities. Each buyer submits bids specifying a quantity and unit price or a bid curve. It is assumed that the price per unit of good traded drops as the quantity increases. So the marketplace can make a profit by aggregating demand and keeping some of the difference between the selling price and the amount each buyer is willing to pay. Dailianas et al. explore three optimization strategies: maximize profit for the marketplace; find the allocation of resources from the sellers that will maximally satisfy the demands of the buyers; and satisfy at least a given percentage of the buyers and then maximize profit. They present an exact algorithm for the first objective (maximize profit) but point out that it is too computationally complex to use in practice. They go on to present heuristic algorithms for each of the three objectives and show that the algorithms produce solutions that are very close to optimal in most cases.

Tewari and Maes [20] describe the multi-attribute resource intermediary (MARI) project, which aims at developing an agent-mediated e-marketplace infrastructure for matching buyers and sellers. Each buyer and each seller is represented by an agent, which represents that buyer or seller’s preferences via a multi-attribute utility function. The approach is illustrated with a market for translation services, where each buyer is looking for a certain number of words to be translated and each seller has a certain translation capacity to sell. They present an algorithm for matching buyers and sellers so that the welfare, measured by the aggregate surplus of all transaction parties is maximized. The amount a buyer is willing to pay for a given translation service is determined by his utility function. The algorithm works by representing the problem as a bipartite graph in which each buyer and each seller is represented by a node and there is a link between potential buyer-seller pairs, based on compatibility between hard buyer constraints and seller characteristics.

Table 4

Results of simulation runs with (O) and without (NoO) balance optimization

<table>
<thead>
<tr>
<th>Description</th>
<th>Average (a_{bt}) per week ($)</th>
<th>Decrease in (a_{bt}) O vs NoO (%)</th>
<th>Average trade volume per week ($)</th>
<th>Increase in trade volume per week O vs NoO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CL, 2CL] NoO</td>
<td>1,455,448</td>
<td>29</td>
<td>79,752</td>
<td>18</td>
</tr>
<tr>
<td>[CL, 2CL] O</td>
<td>1,030,860</td>
<td>22</td>
<td>95,696</td>
<td>39</td>
</tr>
<tr>
<td>[CL, 4CL] NoO</td>
<td>1,742,210</td>
<td>18</td>
<td>95,965</td>
<td>23</td>
</tr>
<tr>
<td>[CL, 4CL] O</td>
<td>1,432,848</td>
<td>18</td>
<td>68,731</td>
<td>15</td>
</tr>
<tr>
<td>[CL, 8CL] NoO</td>
<td>1,903,018</td>
<td>18</td>
<td>95,696</td>
<td>23</td>
</tr>
<tr>
<td>[CL, 8CL] O</td>
<td>1,481,754</td>
<td>22</td>
<td>95,696</td>
<td>39</td>
</tr>
<tr>
<td>[2CL, 4CL] NoO</td>
<td>3,193,685</td>
<td>23</td>
<td>106,184</td>
<td>21</td>
</tr>
<tr>
<td>[2CL, 4CL] O</td>
<td>2,451,769</td>
<td>18</td>
<td>122,444</td>
<td>15</td>
</tr>
<tr>
<td>[4CL, 4CL] NoO</td>
<td>5,649,643</td>
<td>23</td>
<td>145,350</td>
<td>15</td>
</tr>
<tr>
<td>[4CL, 4CL] O</td>
<td>4,634,927</td>
<td>18</td>
<td>176,389</td>
<td>21</td>
</tr>
<tr>
<td>BizXchange NoO</td>
<td>1,874,709</td>
<td>24</td>
<td>69,121</td>
<td>40</td>
</tr>
<tr>
<td>BizXchange O</td>
<td>1,421,266</td>
<td>24</td>
<td>97,037</td>
<td>40</td>
</tr>
</tbody>
</table>
Each link is assigned a reward equal to the bid-ask spread between the buyer and seller at the ends of the link. The objective is to satisfy all the buyers’ needs by matching with sellers such that the sum of the rewards is maximized. They solve the weighted bipartite graph matching problem by transforming it to a linear program. Tewari and Maes are working with a single good characterized by multiple attributes and are performing matching to optimize aggregate surplus, while we are working with multiple goods and are matching based on more complex optimization criteria, resulting in more complex minimum cost flow problems. The work of Tewari and Maes focuses less on the combinatorial optimization aspects and more on providing a general framework for agent mediated buying and selling of non-tangible goods and services.

A fair amount of work has recently been done on matchmaking between suppliers and consumers based on semantically matching the descriptions of the goods. Approaches include the use of description logics [16] and use of techniques from information retrieval [21]. This work is complementary to ours in the sense that the degree of match between descriptions can be used as yet another measure to factor into the decision of which suppliers to refer a business to.

Our balance problem is closely related to the combinatorial auction problem (CAP) [15], in which buyers may bid on combinations of goods, and the value of a good to a buyer may be a function of the other goods that he wins. In the typical formulation of the CAP, the auction house is faced with a set of price offers for various bundles of goods and its objective is to allocate the goods so as to maximize its own revenue. While early work on the CAP dealt only with single-unit CAPs, more recent work has dealt with multi-unit CAPs, in which there are multiple units of some goods available [14,13]. At a formal mathematical level, our balance problem can be transformed into a multi-unit CAP [8].

The problem of finding the optimal allocation in a combinatorial auction can be represented as an integer programming problem and is intractable in general. Researchers have identified numerous tractable special cases, typically expressed in terms of constraints on the bidding language [15]. When fractional solutions are admitted, the problem reduces to a linear programming problem and can be solved in polynomial time, as in our case as well. Much work has been focused on developing heuristic techniques and approximation algorithms for general combinatorial auctions [18]. Archer et al. [2] approximate the solution to the integer case by applying random rounding to the fractional solution produced by linear programming. They solve the allocation problem in multi-unit combinatorial auctions in which each bidder requires at most one unit of any one good. Their random rounding algorithm works in two phases. The first phase has a small probability of over-selling some goods. When goods are over-sold, a second phase randomly deallocates goods from some bidders, resulting in a feasible allocation.

Our work is related to work on automated supply chain formation, the problem of assembling a network of agents that can transform basic goods into composite goods of value. The main problem in automated supply chain formation is to make sure that agents do not purchase more supplies than needed to satisfy the demand for their product and at the same time that they do not commit to providing more product than they can produce, given limited supplies. This should be done while maximizing efficiency, i.e., total value to all agents in the supply chain. Babaioff and Walsh [3] present one of the most general models for automated supply chain formation and show how to solve it as a combinatorial auction. There are interesting similarities and differences between their work and ours. They are interested in maintaining balance of flow of materials between consumption and production for each company. Analogously, we are interested in maintaining balance of cash flow for each company. But whereas they, like all other work in supply chain formation, assume an acyclic network of producers and consumers, the supply/demand relations in the barter pool are generally not acyclic. In their work, agents only receive positive value for obtaining the entire bundle of needed supplies. This is not the case in the barter pool since agents are free to obtain some or even all of their supplies outside the pool.
7. Conclusions

We have presented efficient algorithms for matching buyers and sellers in such a way that single-period trade volume is maximized and balance is maintained as much as possible. Our approach produces solutions that are within 0.7% of those produced by MIP but runs in a fraction of the time and can scale up to handle very large problems. Empirical evaluation shows the effectiveness of the optimization and supports the rule of thumb that maintaining balance of trade helps to maximize trade volume over the long run.

The ability to automate solution of this optimization problem has important practical implications for the barter trade industry. Value of the barter currency is one of the most important factors in making a trade exchange attractive to member businesses. Since a barter currency can only be spent within the barter pool, the currency has high value only if the barter pool is large enough that it includes a rich variety of products and services. But as the number of member businesses and variety of products in the barter pool grow, so does the complexity of the trade optimization problem; so that it becomes impossible for human trade brokers to find optimal matchings of buyers and sellers. Our optimization tool can help the trade brokers to optimize trade so that they can then concentrate on more human-oriented customer relation management issues. Optimizing trade and retaining members translate directly into revenue for the barter trade exchange.

A number of questions remain open to further research. First, trade brokers not only try to maintain balance but also try to put trade dollars into the hands of businesses that tend to spend them. We are examining how to incorporate this by learning estimates of the rate at which different businesses tend to spend as a function of their current balance. Second, our algorithm for matching buyers and suppliers may still recommend that some companies go to many suppliers to satisfy a single product need. To be more realistic, we need to be able to incorporate a bound on the number of suppliers. Finally, we would like to make our simulator more realistic by adding parameters such as the probability that a business will follow a recommendation and the tendency of businesses to stick with suppliers.

Acknowledgements

We thank Bob Bagga and Chris Haddawy at BizXchange for their time and patience in helping us to understand the operations of trade exchanges and for generously providing the transaction data. We thank Sumanta Guha for help in formalizing an earlier qualitative version of this problem. We thank Barbara Cresti, Matthew McGinty, and two anonymous reviewers for their constructive comments on an earlier draft of this paper. The convex hull lemma is due to Hans Volkmer. Thanks to Yongyos Kaewpitakkun and Thai Bui for help in implementing the stochastic rounding algorithm.

References

[22] H. Volkmer, Personal communication, Department of Mathematical Sciences, University of Wisconsin-Milwaukee, 2003.