Feb

26

CISC adalah singkatan dari Complex Intruction Set Computer dimana prosesor tersebut memiliki set instruksi yang kompleks dan lengkap. Sedangkan RISC adalah singkatan dari Reduced Instruction Set Computer yang artinya prosesor tersebut memiliki set instruksi program yang lebih sedikit. Karena perbedaan keduanya ada pada kata set instruksi yang kompleks atau sederhana (reduced), maka mari kita bahas sedikit tentang intruksi itu sendiri.

Ditinjau dari perancangan perangkat instruksinya, ada dua arsitektur prosesor yang menonjol saat ini, yakni arsitektur RISC (Reduce Instruction Set Computer) dan CISC (Complex Instruction Set Computer). Prosesor CISC memiliki instruksi-instruksi kompleks untuk memudahkan penulisan program bahasa assembly, sedangkan prosesor RISC memiliki instruksi-instruksi sederhana yang dapat dieksekusi dengan cepat untuk menyederhanakan implementasi rangkaian kontrol internal prosesor. Karenanya, prosesor RISC dapat dibuat dalam luasan keping semikonduktor yang relatif lebih sempit dengan jumlah komponen yang lebih sedikit dibanding prosesor CISC. Perbedaan orientasi di antara kedua prosesor ini menyebabkan adanya perbedaan sistem secara keseluruhan, termasuk juga perancangan kompilatornya.

Complex Instruction Set Computer (CISC)
Complex instruction-set computing atau Complex Instruction-Set Computer (CISC; “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.
Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik”, yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi “level tinggi” seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg “sarat informasi” ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.
Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.
Satu alasan mengenai hal ini adalah karena set-set instruksi level-tinggi, yang sering disandikan (untuk kode-kode yang kompleks), akan menjadi cukup sulit untuk diterjemahkan kembali dan dijalankan secara efektif dengan jumlah transistor yang terbatas. Oleh karena itu arsitektur -arsitektur ini memerlukan penanganan yang lebih terfokus pada desain prosesor. Pada saat itu di mana jumlah transistor cukup terbatas, mengakibatkan semakin sempitnya peluang ditemukannya cara-cara alternatif untuk optimisasi perkembangan prosesor. Oleh karena itulah, pemikiran untuk menggunakan desain RISC muncul pada pertengahan tahun 1970 (Pusat Penelitian Watson IBM 801 – IBMs)

Tujuan utama dari arsitektur CISC adalah melaksanakan suatu perintah cukup dengan beberapa baris mesin sedikit mungkin. Hal ini bisa tercapai dengan cara membuat perangkat keras prosesor mampu memahami dan menjalankan beberapa rangkaian operasi. Untuk tujuan contoh kita kali ini, sebuah prosesor CISC sudah dilengkapi dengan sebuah instruksi khusus, yang kita beri nama MULT. Saat dijalankan, instruksi akan membaca dua nilai dan menyimpannya k 2 register yangf berbeda, melakukan perkalian operan di unit eksekusi dan kemudian mengembalikan lagi hasilnya ke register yang benar.Jadi instruksi-nya cukup satu saja.

Fase Awal Perkembangan Prosesor RISC

Ide Dasar

Ide dasar prosesor RISC sebenarnya bisa dilacak dari apa yang disarankan oleh Von Neumann pada tahun 1946. Von Neumann menyarankan agar rangkaian elektronik untuk konsep logika diimplementasikan hanya bila memang diperlukan untuk melengkapi sistem agar berfungsi atau karena frekuensi penggunaannya cukup tinggi (Heudin, 1992 : 18). Jadi ide tentang RISC, yang pada dasarnya adalah untuk menyederhanakan realisasi perangkat keras prosesor dengan melimpahkan sebagian besar tugas kepada perangkat lunaknya, telah ada pada komputer elektronik pertama. Seperti halnya prosesor RISC, komputer elektronik pertama merupakan komputer eksekusi-langsung yang memiliki instruksi sederhana dan mudah didekode.

Prosesor RISC Berkeley

Kelompok David Patterson dari Universitas California memulai proyek RISC pada tahun 1980 dengan tujuan menghindari kecenderungan perancangan prosesor yang perangkat instruksinya semakin kompleks sehingga memerlukan perancangan rangkaian kontrol yang semakin rumit dari waktu ke waktu. Hipotesis yang diajukan adalah bahwa implementasi instruksi yang kompleks ke dalam perangkat instruksi prosesor justru berdampak negatif pemakaian instruksi tersebut dalam kebanyakan program hasil komplikasi (Heudin, 1992 : 22). Apalagi, instruksi kompleks itu pada dasarnya dapat disusun dari instruksi-instruksi sederhana yang telah dimiliki.

Rancangan prosesor RISC-1 ditujukan untuk mendukung bahasa C, yang dipilih karena popularitasnya dan banyaknya pengguna. Realisasi rancangan diselesaikan oleh kelompok Patterson dalam waktu 6 bulan. Fabrikasi dilakukan oleh MOVIS dan XEROX dengan menggunakan teknologi silikon NMOS (N-channel Metal-oxide Semiconductor) 2 mikron. Hasilnya adalah sebuah cip rangkaian terpadu dengan 44.500 buah transistor (Heudin, 1992 : 230). Cip RISC-1 selesai dibuat pada musim panas dengan kecepatan eksekusi 2 mikrosekon per instruksi (pada frekuensi detak 1,5 MHz), 4 kali lebih lambat dari kecepatan yang ditargetkan. Tidak tercapainya target itu disebabkan terjadinya sedikit kesalahan perancangan, meskipun kemudian dapat diatasi dengan memodifikasi rancangan assemblernya.

Prosesor RISC Stanford

Sementara proyek RISC-1 dan RISC-2 dilakukan kelompok Patterson di Universitas California, pada tahun 1981 itu juga John Hennessy dari Universitas Stanford mengerjakan proyek MIPS (Microprocessor without Interlocked Pipeline Stages) . Pengalaman riset tentang optimasi kompilator digabungkan dengan teknologi perangkat keras RISC merupakan kunci utama proyek MIPS ini. Tujuan utamanya adalah menghasilkan cip mikroprosesor serbaguna 32-bit yang dirancang untuk mengeksekusi secara efisien kode-kode hasil kompilasi (Heudin, 1992: 34).

Perangkat instruksi prosesor MIPS terdiri atas 31 buah instruksi yang dibagi menjadi 4 kelompok, yakni kelompok instruksi isi dan simpan, kelompok instruksi operasi aritmetika dan logika, kelompok instruksi pengontrol, dan kelompok instruksi lain-lain. MIPS menggunakan lima tingkat alur-pipa tanpa perangkat keras saling-kunci antar alur-pipa tersebut, sehingga kode yang dieksekusi harus benar-benar bebas dari konflik antar alur-pipa.

Sukses perancangan MIPS dilanjutkan oleh tim Stanford dengan merancang mikroprosesor yang lebih canggih, yakni MIPS-X. Perancangan dilakukan oleh tim riset MIPS sebelumnya ditambah 6 orang mahasiswa, dan dimulai pada musim panas tahun 1984. Rancangan MIPS-X banyak diperbaruhi oleh MIPS dan RISC-2 dengan beberapa perbedaan utama :

  • Semua instruksi MIPS-X merupakan operasi tunggal dan dieksekusi dalam satu siklus detak
  • Semua instruksi MIPS-X memiliki format tetap dengan panjang instruksi 32-bit
  • MIPS-X dilengkapi pendukung koprosesor yang efisien dan sederhana
  • MIPS-X dilengkapi pendukung untuk digunakan sebagai prosesor dasar dalam sistem multiprosesor memori-bersama (shared memory)
  • MIPS-X dilengkapi chace instruksi dalam-cip yang cukup besar (2 kilobyte)
  • MIPS-X difabrikasi dengan teknologi CMOS 2 mikron.
  • Sama seperti MIPS, MIPS-X merupakan prosesor dengan alur-pipa tanpa saling-kunci (interlock) perangkat keras. Perangkat lunaknya dirancang untuk mengikuti pewaktuan instruksi agar tidak terjadi konflik antar alur-pipa (Heudin, 1992 : 36-37).
  • Cip pertama yang dihasilkan bekerja baik dengan detak 16 MHz, lebih rendah dari target yang dicanangkan setinggi 20 MHz, akibat tidak sempurnanya instruksi percabangan. Versi 25 MHz dibuat dengan menggunakan teknologi CMOS 1,6 mikron. Ditambah dengan chace yang diintregrasikan pada cip prosesor, MIPS-X berisi hampir 150.000 transistor di atas keping seluas 8 x 8,5 mm (Heudin, 1992 : 38).

Arah Perkembangan Prosesor RISC

  • Kebanyakan riset tentang prosesor RISC ditujukan untuk memperbaiki kinerja sistem komputer secara keseluruhan. Analisis yang mendalam menunjukkan bahwa ada dua arah perlembangan penting prosesor RISC yaitu upaya ke arah pemanfaatan teknologi proses yang mampu menghasilkan prosesor cepat, misalnya teknologi bipolar ECL (emitter-coupled logic) serta pemanfaatan bahan semikonduktor GaAs (galium arsenida). Arah lain adalah upaya untuk merancang arsitektur multiprosesor dan mengintegrasikan unit-unit fungsional pendukung pemrosesan paralel dalam satu cip.

Prosesor RISC, yang berkembang dari riset akademis telah menjadi prosesor komersial yang terbukti mampu beroperasi lebih cepat dengan penggunaan luas cip yang efisien. Kemajuan mutakhir yang ditunjukkan oleh mikroprosesor PowerPC 601 dan teknologi emulasi yang antara lain dikembangkan oleh IBM memungkinkan bergesernya dominasi cip-cip keluarga-86 dan kompatibelnya. Bila teknik emulasi terus dikembangkan maka pemakai tidak perlu lagi mempedulikan prosesor apa yang ada di dalam sistem komputernya, selama prosesor tersebut dapat menjalankan sistem operasi ataupun program aplikasi yang diinginkan.

http://www.electroniclab.com/index.php?option=com_content&view=article&id=30:cisc-vs-risc&catid=9:labmikro&Itemid=11

http://www.d3elektro.undip.ac.id/index.php/info-full/16-prosesor-risc-perkembangan-dan-prospeknya.html

http://irfrans1987.wordpress.com/2008/12/05/risc-cisc-pipelining/

http://agfi.staff.ugm.ac.id/blog/index.php/2008/12/risc-vs-cisc/

http://www.d3elektro.undip.ac.id/index.php/info-full/16-prosesor-risc-perkembangan-dan-prospeknya.html