RSS
 

MAKALAH PROTEIN

05 Jun

BAB I

PENDAHULUAN

 

 

1.1  Latar Belakang

 

Protein merupakan komponen penting atau komponen utama sel hewan ataumanusia. Oleh karena sel itu merupakan pembentuk tubuh kita, maka protein yangterdapat dalam makanan berfungsi sebagai zat utama dalam pembentukan dan pertumbuhan tubuh. Kita memperoleh protein dari makanan yang berasal dari hewan atau tumbuhan.

Sintesa protein adalah penyusunan amino pada rantai polipeptida. Dalam proses tersebut melibatkan DNA(TiminT,AdenineA,SitosinC,GuaninG)danRNA (Ur asil U,AdeninA,SitosinC,GuaninG  ). DNA berfungsi sebagai bahan geneticuntuk sel baik prokariot maupun eukariot, karena prokariot tidak memiliki system internal,DNA tidak terpisahkan dari inti sel lainnya. Pada Eukariot DNA terletak di inti dipisahkandari sitoplasma oleh selubung inti. Proses sintesis protein terbagi atas transkripsi dantranslasi. Seperti kita ketahui DNA sebagai media untuk proses transkripsi suatu gen berada di kromosom dan terikat oleh protein histon. Saat menjelang proses transkripsi berjalan, biasanya didahului signal dari luar akan kebutuhan suatu protein atau molekullain yang dibutuhkan untuk proses pertumbuhan, perkembangan, metabolisme, dan fungsi lain di tingkat sel maupun jaringan .

Kandungan informasi DNA, materi genetik, terdapat dalam bentuk urutan nukleotida yang spesifik di sepanjang untai DNA. Tetapi bagaimana informasi tersebut dihubungkan dengan sifat-sifat yang diwarisi suatu organisme? Atau dengan kata lain, apa yang sebenarnya diutarakan oleh gen? Dan bagaimana pesan tersebut diterjemahkan oleh sel ke dalam sifat yang spesifik, seperti rambut coklat atau tipe golongan darah A? Ingat kembali kacang ercis Mendel. Salah satu karakter yang dipelajari pada kacang ercis adalah panjang batang.

Variasi dalam satu gen tunggal menentukan perbedaan antara varietas (tanaman) kacang ercis yang tinggi dan yang kerdil. Mendel tidak mengetahui dasar fisiologis dari perbedaan fenotipik tersebut, namun para ahli tumbuhan menjelaskan sebagai berikut: Kacang yang kerdil kekurangan hormon pertumbuhan yang disebut geberrelin, yang merangsanga pertumbuhan normal pada batang. Kacang yang kerdil jika diberi hormone giberelin akakn menunjukkan perumbuhan yang normal. Apa yang menyebabkan kacang yang kerdil tidak dapat mensintesis hormon giberelin sendiri? Tanaman tersebut ternyata tidak mempunyai suatu protein penting, yaitu suatu enzim yang diperlukan untuk sintesis hormon giberelin.Contoh di atas menggambarkan bahasan utama dari sintesis protein. Oleh karena pentingnya sintesis protein bagi fungsi dan fisiologi tubuh, maka disusunlah makalah sederhana ini untuk membantu memberikan informasi mengenai sintesis protein.

 

1.2  Rumusan masalah

  • Apakah yang dimaksud dengan sintesa atau sintesis protein
  • Bagaimanakah proses dari replikasi DNA
  • Bagaimanakah proses dari Transkripsi dan Translasi DNA
  • Bagaimanakah proses dari siklus urea

1.3  Tujuan

  • Dapat mengetahui apakah yang dimaksud sintesa atau sintesis protein
  • Dapat mengetahui bagaimanakah proses dari replikasi DNA
  • Dapat mengetahui bagaimanakah proses dari Transkripsi Translasi DNA
  • Dapat mengetahui bagaimanakah proses dari siklus urea

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAB II

TINJAUAN PUSTAKA

 

 

2.1 Pengertian Protein

 

Protein adalah senyawa organik kompleks dengan berat molekul tinggi, protein merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Protein mengandung molekul karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus (wikipedia). fungsi utama protein Sebagai enzim, Alat pengangkut dan penyimpan Misalnya hemoglobin mengangkut oksigen dalam eritrosit sedangkan mioglobin mengangkut

oksigen dalam otot,penunjang mekanis, Media perambatan impuls syaraf misalnya berbentuk reseptor, dan Pengendalian pertumbuhan.

 

 

Secara singkat penjelasan tentang protein sebagai berikut :

Protein  yaitu Polimerisasi asam amino

Fungsi protein secara singkat yaitu sebagai : katalitik (enzim), kontraksi, pengatur gena, pencegahan, hormon, struktural, transport.

Asam amino merupakan: bagian-bagian dari protein. atau kata lain asam amino akan membentuk protein.

ikatan-ikatan kuat pada protein : peptida, disulfide dan ikatan lemah : hidrogen, ionik (garam), van der waals (hidrofobik).

 

Sifat-sifat umum dari protein yaitu :

REAKSI WARNA :

Asam amino : Ninhidrin

Protein : Biuret

 

DENATURASI protein :

Perubahan sifat protein sehingga tidak alamiah lagi /kerusakan protein. sebab sebab denaturasi protein yaitu :

secara fisis : dikocok, sinar, dingin, panas

secara kimiawi : + asam, basa, organik

Pada denaturasi : ikatan lemah hilang ikatan kuat masih

 

Klasifikasi protein berdasar sifat protein :

1. Kelarutan : albumin, globulin, fibrinogen

2. Bentuk : globuler, fibrosa

3. Sifatnya dengan elektroforesis

4. Sedimentasi : VLDL, IDL, LDL, HDL.

5. Imunologis : Ig A, D, E, G, M.

6. Struktur tiga dimensi : primer, sekunder, tertier, kuarterner

7. Fungsi biologis : struktural, enzim

 

Untuk mengetahui kecukupan protein yaitu dengan  mengukur keseimbangan nitrogen.

Keseimbangan nitrogen : perbedaan antara N yang masuk : keluar

Positif : Masuk > keluar contoh anak sedang tumbuh, ibu hamil

Negatif : Masuk < keluar contohnya pasien setelah operasi, kanker lanjut, kwashirkor, marasmus, makan protein.

 

ASAM AMINO

asam amino akan membentuk protein melalui proses tranlasi di dalam sel. atau asam amino adalah bagian penyusun dari protein.

- Asam amino esensiil yaitu asam amino yang tidak dapat disintesis oleh tubuh manusia. tetapi didapatkan dari makanan (tumbuhan dan hewan)

- Sifat : Asam amino di alam ± 300 macam yang menyusun protein (manusia, hewan, tumbuhan) = 20 macam asam amino esensial

- Rumus asam amino : Dua gugus dapat mengalami ionisasi : – COOH (asam) dan -NH2 basa.

 

 

 

 

 

2.2 Struktur Protein

Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat):

  • struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Frederick Sanger merupakan ilmuwan yang berjasa dengan temuan metode penentuan deret asam amino pada protein, dengan penggunaan beberapa enzim protease yang mengiris ikatan antara asam amino tertentu, menjadi fragmen peptida yang lebih pendek untuk dipisahkan lebih lanjut dengan bantuan kertas kromatografik. Urutan asam amino menentukan fungsi protein, pada tahun 1957, Vernon Ingram menemukan bahwa translokasi asam amino akan mengubah fungsi protein, dan lebih lanjut memicu mutasi genetik.

 

  • struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:
    • alpha helix (α-helix, “puntiran-alfa”), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;
    • beta-sheet (β-sheet, “lempeng-beta”), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
    • beta-turn, (β-turn, “lekukan-beta”); dan
    • gamma-turn, (γ-turn, “lekukan-gamma”).
    • struktur tersier yang merupakan gabungan dari aneka ragam dari struktur sekunder. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener.
    • contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.

Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa molekular dengan spektrometri massa.

Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR) Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.

Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.

2.3 Fungsi protein

Protein berperan penting dalam struktur dan fungsi semua sel mkahluk hidup dan virus. Protein memiliki berbagai fungsi seperti :

  1. Protein merupakan enzim atau subunit enzim  , missal ribonuklease , tripsin.
    1. Protein berperan dalam fungsi structural atau mekanis , missal protein yang membentuk batang dan sendi ketoskerlileton.
    2. Protein juga terlibat dalam system kekebalan (imun) sebagai antibody missal Trombin.
    3. Protein sebagai system pengendali dalam bentuk hormone , missal insulin,hormone tumbuh atau auksin
    4. Protein sebagai komponen penyimpan atau nutrient,missal kasein(susu),ovalgumin(telur),gliadin(gandum) dan transportasi hara tumbuhan.
    5.  Protein sebagai salah satu sumber gizi dan berperan sebagai sumber asam amino bagi organism yang tidak dapat membentuk asam amino sendiri .
    6. Pada organisme lain protein memiliki fungsi lain seperti monelin , pada suatu tanaman yang memiliki rasa manis.

Ciri-ciri tumbuhan yang kekurangan protein yaitu :

  1. Tanaman tumbuh kerdil
  2. Daun menguning karena kekurangan klorofil,lebih lanjut mongering dan rontok
  3. Tulang-tulang dibawah permukaan daun tampak pucat
  4. Pertumbuhan tanaman lambat kerdil dan lemah
  5. Produksi bunga dan biji rendah
  6. Jaringan tanaman mengering dan mati.

BAB III

PEMBAHASAN

 

3.1 Sintesis protein.

Protein mempunyai peranan penting dalam organisasi struktural dan fungsional dari sel. Protein struktural menghasilkan beberapa komponen sel dan beberapa bagian diluar sel seperti kutikula,serabut dan sebagainya. Protein fungsional (enzim dan hormon) mengawasi hamper semua kegiatan metabolisme , biosintesis, pertumbuhan, pernapasan dan perkembangbiakan dari sel. Namun demikian sebuah sel tidak mungkin membuat protein yang dibutuhkan oleh individu yang bersel banyak. Sintesis protein adalah proses pembentukan protein dari monomer peptida yang diatur susunannya oleh kode genetik. Sintesis protein dimulai dari anak inti sel, sitoplasma dan ribosom.

Sintesis protein melibatkan DNA sebagai pembuat rantai polipeptida. Meskipun begitu, DNA tidak dapat secara langsung menyusun rantai polipeptida karena harus melalui RNA. Seperti yang telah kita ketahui bahwa DNA merupakan bahan informasi genetik yang dapat diwariskan dari generasi ke generasi. Informasi yang dikode di dalam gen diterjemahkan menjadi urutan asam amino selama sintesis protein. Informasi ditransfer secara akurat dari DNA melalui RNA untuk menghasilkan polipeptida dari urutan asam amino yang spesifik. Menurut (Suryo, 2008:59-61) DNA merupakan susunan kimia makromolekular yang komplek, yang terdiri dari tiga macam molekul yaitu : Gula pentose yang dikenal sebagai deoksiribosa, Asam pospat, dan Basa nitrogen, dibedakan atas dua tipe dasar yaitu : pirimidin {sitosin (S) dan timin (T)} dan purin {adenine (A) dan guanine (G)}.

Suatu konsep dasar hereditas yang mampu menentukan ciri spesifik suatu jenis makhluk menunjukkan adanya aliran informasi bahan genetik dari DNA ke asam amino (protein). Konsep tersebut dikenal dengan dogma genetik. Tahap pertama dogma genetik dikenal sebagai proses transkripsi DNA menjadi mRNA. Tahap kedua dogma genetik adalah proses translasi atau penerjemahan kode genetik pada RNA menjadi urutan asam amino. Dogma genetik dapat digambarkan secara skematis sebagai berikut.

DNA transkripsi RNA translasi Protein

 

3.2 Proses Replikasi DNA                                    

Replikasi adalah proses duplikasi DNA secara akurat. genom manusia pada satu sel terdiri sekitar 3 milyar dan pada saat replikasi harus diduplikasi secara akurat (persis tidak boleh ada yang salah). Replikasi adalah transmisi vertical (dari sel induk ke sel anak supaya informasi genetik yang diturunkan sama dengan sel induk). Replikasi hanya terjadi pada fase S (pada mamalia), Replikasi terjadi sebelum sel membelah dan selesai sebelum fase M.

Salah satu sumber kesalahan DNA adalah pada kesalahan replikasi yang dipengaruhi oleh berbagai factor, diantaranya karena kondisi lingkungan dan kesalahan replikasi sendiri sehingga menyebabkan terjadinya mutasi. Supaya replikasi sel dari generasi ke generasi tidak terjadi kesalahan maka perlu ada repair DNA. Selain karena kesalahan replikasi, DNA juga sangat rentan terhadap bahan kimia, radiasi maupun panas (hal yang dapat menyebabkan mutasi pada DNA pada saat replikasi).

Replikasi terjadi dengan proses semikonservatif karena semua DNA double helix. Hasil replikasi DNA double strand. Kedua DNA parental strand bisa menjadi template yang berfungsi sebagai cetakan untuk proses replikasi: Semikonservaative process. Primer strand : Pada 3’ dia akan melepaskan 2P dipakai sebagai energy untuk menempelkan, tetapi pada 5’ P tidak bisa dilepas karena ketiga P dibutuhkan sehigga tidak ada energy sehingga tidak pernah terjadi sintesis dari 3’-5’, tetapi dari 5’-3’, jadi yang menambah selalu ujung 3’ .

 

 

 

 

Perbedaan Replikasi DNA dan Trankripsi DNA yaitu :

 

Enzim yang berperan dalam proses transkripsi dan replikasi berbeda Pada proses transkripsi, enzim yang berperan RNA polymerase. transkripsi DNA : terjadi pada saat akan terjadi sintesis protein (ekspresi gen); yang dipakai cetakan hanya salah satu untai DNA(3’-5’)

replikasi DNA : sebelum fase mitosis (fase S) dalam siklus sel; kedua untai induk dipakai sebagai cetakan untuk di replikasi.

 

DNA polymerase

 

Pada proses replikasi DNA terdapat enzim sentral, yaitu DNA polymerase. Pada proses replikasi, DNA polymerase hanya bisa menempel pada gugus OH (hidroksil) dimana gugus OH hanya ada pada ujung 3’ sedangkan ujung 5’ adalah ujung fosfat. (ciri utama DNA polymerase). Ciri kedua: DNA polymerase tidak bisa mensintesis/ menempelkan DNA ke pasangan-nya kalau tidak ada primer (lokomotif). Sifat dari DNA polymerase dia hanya bisa mensintesis DNA dari arah 5’-3’ sehingga pertumbuhan dari 5’-3’ karena penambahan pada ujung 3’, dimana pada ujung 3’ ada ujung hidroksil.

Ciri lain DNA polymerase: membutuhkan primer, tidak bisa mensintesis DNA tanpa adanya primer, primer yang dipakai adalah RNA (sekitar 4-5 basa dan dilanjutkan DNA). DNA yang dibutuhkan adalah DNA primase untuk meletakkan RNA pada tempatnya. DNA primase untuk mensintesis RNA sebagai lokomotif (4-5 basa). Bila lokomotif sudah jadi maka akan di-take over oleh DNA polymerase, dan yang ditambahkan adalah DNA.

Pada Proses replikasi di butuhkan titik awal (replication origin) biasa di singkat ORI. Contoh pada plasmid (prokariot), terdapat proses replikasi yang dimulai pada replication origin dan mengembang sampai dihasilkan 2 plasmid yang sama persis. Tetapi pada eukariot (mamalia) lebih kompleks tetapi tetap membutuhkan replication origin.

Pada mamalia ada beberapa replication origin (replication bubble) yang akan bergabung satu sama lain. DNA harus terbuka dahulu baru bisa digandakan. Origin replication disebut sebagai unique sequence yang merupakan pertanda sebagai tempat proses/titik mulai terjadinya replikasi, dimana ada protein tertentu yang akan mengenali sequence. Pada bakteri (prokariot) hanya butuh satu titik ORI (origin of replication) sedangkan pada mamalia (eukariot) butuh beberapa ORI karena kalau hanya 1 ORI akan butuh waktu 3 minggu untuk mereplikasi 3 milyard DNA. Sehingga pada mamalia ada 30.000 titik ORI yang bekerja secara bersamaan sehingga fase S untuk replikasi hanya butuh beberapa jam saja.

Untuk replikasi perlu sequence tertentu yaitu yang disingkat (ACS) merupakan urutan basa yang sangat terjaga karena urutan basa tersebut dikenali oleh protein Origin Recognition Complex (ORC) sehingga bila ORC mengenali sequence maka replikasi dapat dimulai. ORI lebih global sedangkan ACS sudah pada sequence (pada urutan basa tertentu). Replikasi terjadi pada fase S sedangkan transkripsi bisa terjadi pada fase S atau G1 dimana terjadi sintesis protein maka bisa terjadi transkripsi.

Saat awal akan di mulainya repliaksi, pada G1 akhir ORC mengenali sequence ACS, kemudian ada molekul lain, juga helikase yang membentuk pre-replicative complex (pre-RC). selanjutnya pada fase S degradasi fosporilasi ORC, degradasi fosforilasi Cdc6 maka terbentuk bubble replication. Helikase membuka pilinan, topoisomerase yang memotong pada titik tertentu.

secara singkat dalam siklus sel : Pada fase G2/M sudah ada 2 copy. Pada fase G1 persiapan,

S proses replikasi, G2/M sudah selesai

 

 

 

Proses replikasi DNA

 

Pertama adanya replication origin, kemudian pembukaan local DNA helix dan adanya RNA primer synthesis. Replikasi:> ORC menempel pada ACS (ORI) :> sehingga pilinan membuka dengan bantuan helikase. Helikase akan menempel untuk membuka pilinan (helix). DNA double helix (bentuk terpilin). Untuk mereplikasi bila bentuknya terpilin tidak akan pernah bisa sehingga perlu dibuka pilinannya. Bila membuka pilinan pada salah satu ujung maka ujung yang lain akan semakin kuat pilinannya sehingga perlu daerah tertentu yang dipotong untuk membuka pilinan tesebut yang dilakukan oleh helikase. Perlu DNA primase untuk membuat RNA primer sintesis, karena DNA polymerase tidak bisa mensintesis tanpa ada primer.

Kemudian terjadi proses replikasi. Karena arah DNA anti parallel maka perlu Leading-strand dan lagging strand. Dari ORI didapatkan 2 replication fork.Ada ORI dan helikase yang membuka pilinan terus sampai terbentuk replication bubble.

 

Proses replikasi yang di perlukan utama:

1. ORI

2. Helikase

3. Replication bubble

 

Selanjutnya perlu primase untuk membuka primary. Merah RNA, Biru DNA. Bubble semakin besar, replikasi berlanjut dan 1 ORI akan membentuk 2 replication fork.

 

Replication fork pada plasmid

Terdapat 2 parental strand (run occusite direction) yang bersifat antiparalel: 5’-3’ dan 3’-5’. DNA polymerase hanya mensintesis/mempolimerasi dari arah 5’-3’. Satu strain bisa secara kontinyu disintesis yaitu yang 5’-3 (leading strain). Sementara yang 3’-5’ tidak bisa dibentuk, tetapi tetap harus dibentuk dengan 5’-3’, sehingga perlu satu strain yang terbentuk dari small discontinue peaces yang disebut sebagai lagging strain. Small peaces disebut okazaki fragmen.

Pada leading strand karena arahnya sudah dari 5’-3’ maka tinggal menambah saja. Sedangkan pasangannya (lagging strain) karena arahnya 3’-5’ maka hanya diam, tetapi pada titik tertentu akan ditambahkan primase lagi dan akan mensintesis lagi dari arah 5’-3’ (okazaki fragmen: fragmen2 potongan kecil yang terjadi pada saat replikasi pada lagging strain)-> Pada lagging strand arahnya dari 3’-5’.

Okazaki fragment: fragment potongan kecil pada saat replikasi yang terjadi pada lagging strand template. Yang terjadi pd Okazaki fragment (OF): kita punya RNA primer sehingga di OF ada RNA-DNA hybrid. Tetapi RNA harus dibuang oleh RNase H. Setelah itu untuk menggantikan RNA dibutuhkan polymerase delta (delta) yang bisa bersifat exonuclease tetapi juga bisa bersifat endonuclease, yaitu mereplace atau menempatkan dNTP. Pada saat RNA dibuang maka akan digantikan dengan DNA polymerase delta yang baru sampai hilang sama sekali. Tetapi masih belum lengkap karena masih ada celah sehingga perlu DNA ligase untuk menempelkan. Akhirnya diperoleh 2 strain yang sama persis.

 

Protein yang dibutuhkan dalam replication fork yaitu:

 

- Helicase: fungsinya untuk membuka (unwinding) parental DNA

- Single-stranded DNA-binding protein: untuk menstabilisasi unwinding, untuk mencegah DNA yang single-stranded agar tetap stabil (tidak double straded lagi).

- Topoisomerase: untuk memotong (breakage) pada tempat-tempat tertentu.

DNA Polimerase yang memiliki DNA single-strand binding protein monomer yang bertugas untuk mencegah supaya DNA tidak hanya menempel dengan lawannya tetapi juga bisa membentuk hairpins.

Karena sudah terbuka sehingga ada basa-basa tertentu yang saling berpasangan sehingga terbentuk hairpins. Supaya tidak terbentuk hairpins maka didatangkan single strand binding protein supaya tetap lurus dan tidak berbelok-belok.Topoisomerase, cirinya memotong DNA pada tempat tertentu sehingga mudah untuk memutar karena sudah dipotong. Tugasnya adalah memasangkan kembali DNA yang terpotong.

 

 

Protein aksesori:

Brace protein, : Replication factor C (RFC), supaya DNA polimerasenya menempelnya stabil (tidak mudah terlepas dari DNA template).

Sliding-clamps protein, supaya kedudukannya stabil dan tidak goyang2.

Proses pada leading dan lagging strand berlangsung secara bersamaan, tetapi proses pada lagging bertahap. Ada DNA polimerase dan sliding clamps. Sintesis terjadi pada leading strand terlebih dahulu. Pada tahap tertentu DNA primase akan ditambahkan sehingga clamps-nya datang lagi. Setelah proses replikasi selesai maka RNA akan segera dibuang digantikan dengan DNA yang baru.

Perangkat untuk replikasi: DNA polimerasi, brace, clamp, DNA helicase, single-strand binding protein, primase, topoisomerase.Setelah direplikasi ujung DNA harus ada telomere (ujung DNA). Bila tidak ada telomere maka kromosom akan saling menempel sehingga kromosom tidak 46 tetapi dalam bentuk gandeng2 (tidak diketahui).

 

Chromosome end:

Pada lagging strand, di akhir replikasi ujungnya akan dihilangkan, RNA juga akan dihilangkan, sehingga hasil replikasi menjadi lebih pendek. Hal ini terjadi karena menggunakan primer RNA untuk proses replikasi, dan RNA primer setelah replikasi harus dibuang dan tidak bisa digantikan. Untuk mengatasinya maka diadakan telomerase yang dibuat berkali-kali. (slide 76: TTGGGGTTGGGTTGGGG). Telomer dibuat oleh enzim telomerase. Telomer: ujung yang merupakan non coding DNA sehingga kalau memendek tidak akan menjadi masalah karena tidak mengkode apapun. Telomer diadakan untuk mengantisipasi pada saat replikasi karena DNA akan memendek. EXTENDS 3’ PRIMARY GENE –> TELOMERE, dan enzim yang membuatnya : telomerase. Semua sel selain stem sel tidak punya telomere.

Pada saat sel replikasi maka akan selalu memendek. Sampai pada suatu titik tertentu yang merupakan signal bagi sel untuk berhenti membelah. Karena kemampuan sel untuk membelah dibatasi oleh panjangnya telomerase. Pada saat telomere memendek sampai batas tertentu maka akan memberikan sinyal bagi sel untuk berhenti membelah. Sedangkan pada stem sel yang memiliki telomerase, maka kemampuan membelahnya tidak terbatas karena pada saat telomere habis maka telomerase akan membentuk telomere baru. Hal ini yang dimanfaatkan oleh sel kanker karena sel kanker memiliki telomerase sehingga sel kanker dapat terus membelah. Manusia memiliki kemampuan replikasi sel yang terbatas karena keterbatasan telomere, shg bila telomere habis sel akan berhenti membelah.

 

 

3.3 Pengertian Transkripsi dan Translasi

Gen memberi perintah untuk membuat protein tertentu. Tetapi gen tidak membangun protein secara langsung. Jembatan antara DNA dan sintesis protein adalah RNA. RNA secara kimiawi serupa dengan DNA, terkecuali bahwa RNA mengandung ribose, bukan deoksiribosa, sebagai gulanya dan memiliki basa nitrogen urasil, dan bukan timin.

Transkripsi merupakan sintesis RNA berdasarkan arahan DNA. Kedua asam nukleat menggunakan bahasa yang sama, dan informasinya tinggal ditranskripsikan atau disalin, dari satu molekul ke molekul lain. Molekul RNA yang dihasilkan merupakan transkrip penuh dari instruksi-instruksi pembangun-protein dari gen itu. Jenis molekul RNA ini disebut RNA mesenjer (mRNA), karena molekul ini membawa pesan dari DNA ke peralatan pensintesis-protein dari sel tersebut.

Translasi merupakan sintesis polipeptida yang sesungguhnya, yang trejadi berdasarkan arahan mRNA. Selama tahapan ini terdapat perubahan bahasa: Sel tersebut harus menerjemahkan (mentranslasi) urutan basa molekul mRNAke dalam urutan asam amino polipeptida. Tempat-tempat translasi ini ialah ribosom, partikel kompleks yang memfasilitasi perangkaian secara teratur asam amino menjadi rantai polipeprtida.

Walaupun mekanisme dasar transkripsi dan translasi serupa untuk prokariota dan eukariota, terdapat suatu perbedaan penting dalam aliran informasi genetik di dalam sel-sel tersebut. Karena bakteri tidak memiliki nukleus, DNA-nya tidak tersegregasi dari ribosom dan perlengkapan pensintasis-protein lainnya. Transkripsi dan translasi dikopel (dipasangkan), dengan ribosom menempel pada ujung depan molekul mRNA sewaktu transkripsi masih terus berlangsung.

Sebaliknya, sel eukariotik, selubung nukleus memisahkan transkripsi dan translasi dalam ruang dan waktu. Transkripsi terjadi di nukleus, dan mRNA dikirim ke sitoplasma, di mana translasi terjadi. Tetapi sebelum mRNA itu meninggalkan nukleus, transkrip-transkrip RNA eukariotik dimodifikasi dengan berbagai cara untuk menghasilkan mRNA akhir yang fungsional. Dengan demikian, dalam proses dua-langkah ini, transkrip gen eukariotik menghasilkan pra-mRNA, dan pemrosesan RNA menghasilkan mRNA akhir.

 

Gambar 1. Perbedaan sintesis protein (a) prokariotk dan (b) eukariotik

 

3.4  Proses siklus urea

Pada eukariota, siklus urea (bahasa Inggris: urea cycle, ornithine cycle) merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea. Siklus ini ditemukan pertama kali oleh Hans Krebs dan Kurt Henseleit pada tahun 1932.

Pada mamalia, siklus urea terjadi di dalam hati, produk urea kemudian dikirimkan ke organ ginjal untuk diekskresi. Dua jenjang reaksi pada siklus urea terjadi di dalam mitokondria. Ringkasan reaksi siklus urea adalah:

Amonia

Amonia merupakan produk dari reaksi deaminasi oksidatif yang bersifat toksik. Pada manusia, kegagalan salah satu jenjang pada siklus urea dapat berakibat fatal, karena tidak terdapat lintasan alternatif untuk menghilangkan sifat toksik tersebut selain mengubahnya menjadi urea. Defisiensi enzimatik pada siklus ini dapat mengakibatkan simtoma hiperamonemia yang dapat berujung pada kelainan mental, kerusakan hati dan kematian. Sirosis pada hati yang diakibatkan oleh konsumsi alkohol berlebih terjadi akibat defisiensi enzim yang menghasilkan Sarbamil fosfat pada jenjang reaksi pertama pada siklus ini.

Ikan mempunyai rasio amonia yang rendah di dalam darah, karena amonia diekskresi sebagai gugus amida dalam senyawa glutamina. Reaksi hidrolisis pada glutamina akan menkonversinya menjadi asam glutamat dan melepaskan gugus amonia.Sedangkan manusia hanya mengekskresi sedikit sekali amonia, yang dikonversi oleh asam di dalam urin menjadi ion NH4+, sebagai respon terhadap asidosis karena amonia memiliki kapasitas seperti larutan penyangga yang menjaga pH darah dengan menetralkan kadar asam yang berlebih.

Urea

Urea merupakan zat diuretik higroskopik dengan menyerap air dari plasma darah menjadi urin. Kadar urea dalam darah manusia disebut BUN (bahasa Inggris: Blood Urea Nitrogen). Peningkatan nilai BUN terjadi pada simtoma uremia dalam kondisi gagal ginjal akut dan kronis atau kondisi gagal jantung dengan konsekuensi tekanan darah menjadi rendah dan penurunan laju filtrasi pada ginjal. Pada kasus yang lebih buruk, hemodialisis ditempuh untuk menghilangkan larutan urea dan produk akhir metabolisme dari dalam darah.

Pada hewan seperti burung dan reptil yang harus mencadangkan air di dalam tubuhnya, nitrogen diekskresi sebagai asam urat yang bersenyawa dengan sedikit kandungan air. Sedang pada manusia, asam urat tidak disintesis dari amonia, melainkan dari adenina dan guanina yang terdapat pada berbagai nukleotida. Asam urat biasanya diekskresi dalam jumlah sedikit, melalui urin. Kadar asam urat dalam darah dapat meningkat pada penderita gangguan ginjal dan leukimia. Bentuk garam dari asam urat dapat mengendap menjadi batu ginjal maupun batu kemih. Pada artritis, endapan garam dari asam urat terjadi pada tulang rawan yang terdapat pada persendian.

 Jenjang reaksi

Sarbamil fosfat sintetase, sebuah enzim, merupakan katalis pada reaksi dengan substrat NH3, CO2 dan ATP menjadi sarbamil fosfat,

yang kemudian diaktivasi oleh asam N-asetilglutamat yang terbentuk dari asam glutamat dan asetil-KoA dengan enzim N-asetilglutamat sintetase. N-asetilglutamat merupakan regulator yang penting dalam ureagenesis selain arginina, kortikosteroid dan protein yang lain.

Reaksi kondensasi yang terjadi pada ornitina lantas memicu konversi sarbamil fosfat menjadi sitrulina dengan bantuan enzim ornitina transarbamilase.Kemudian sitrulina dilepaskan dari dalam matriks menuju sitoplasma, dan kondensasi terjadi dengan asam aspartat dan enzim argininosuksinat sintetase, membentuk asam argininosuksinat, yang kemudian diiris oleh argininasuksinat liase menjadi asam fumarat dan arginina. Asam fumarat akan dioksidasi dalam siklus sitrat di dalam mitokondria, sedangkan arginina akan teriris menjadi urea dan ornitina dengan enzim arginase hepatik. Baik argininosuksinat liase maupun arginase diinduksi oleh rasa lapar, dibutiril cAMP dan kortikosteroid.

BAB IV

 PENUTUP

 

 

5.1 Kesimpulan

 

Sintesa protein adalah penyusunan amino pada rantai polipeptida. Replikasi adalah proses duplikasi DNA secara akurat . Replikasi terjadi dengan proses semikonservatif karena semua DNA double helix. Transkripsi merupakan sintesis RNA berdasarkan arahan DNA. Translasi merupakan sintesis polipeptida yang sesungguhnya, yang trejadi berdasarkan arahan mRNA. Siklus urea merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea.

 

 

5.2 Saran

Semoga makalah ini dapat menjadikan tambahan ilmu bagi pembaca pada umumnya dan penulis pada khususnya . Namun , penulis juga membutuhkan kritik yang membangun untuk menjadikan tambahan ilmu bagi poenulisnya .

 

 

DAFTAR PUSTAKA

 

Almatsier, S..2003. Prinsip Dasar Ilmu Gizi.Jakarta : Gramedia

 

McGilvery,Robert W.,1996.Biokimia Suatu Pendekatan Fungsional.Surabaya : Airlangga University Press.

 

Poedjiadi,Anna.2006.Dasar-Dasar Biokimia.Jakarta : Universitas Indonesia

 

Schumm,Dorothy E..1993.Intisari Biokimia.Jakarta : Binarupa Aksara

 

Suwandito, Tri Martini, METABOLISME PROTEIN DAN ASAM AMINO, www.google.com, diakses 8 oktober 2008.

 

Tri Rini Nuringtyas, ASAM AMINO DAN PROTEIN, www.google.com, diakses 8 oktober 2008.

BAB I

PENDAHULUAN

 

 

1.1  Latar Belakang

 

Protein merupakan komponen penting atau komponen utama sel hewan ataumanusia. Oleh karena sel itu merupakan pembentuk tubuh kita, maka protein yangterdapat dalam makanan berfungsi sebagai zat utama dalam pembentukan dan pertumbuhan tubuh. Kita memperoleh protein dari makanan yang berasal dari hewan atau tumbuhan.

Sintesa protein adalah penyusunan amino pada rantai polipeptida. Dalam proses tersebut melibatkan DNA(TiminT,AdenineA,SitosinC,GuaninG)danRNA (Ur asil U,AdeninA,SitosinC,GuaninG  ). DNA berfungsi sebagai bahan geneticuntuk sel baik prokariot maupun eukariot, karena prokariot tidak memiliki system internal,DNA tidak terpisahkan dari inti sel lainnya. Pada Eukariot DNA terletak di inti dipisahkandari sitoplasma oleh selubung inti. Proses sintesis protein terbagi atas transkripsi dantranslasi. Seperti kita ketahui DNA sebagai media untuk proses transkripsi suatu gen berada di kromosom dan terikat oleh protein histon. Saat menjelang proses transkripsi berjalan, biasanya didahului signal dari luar akan kebutuhan suatu protein atau molekullain yang dibutuhkan untuk proses pertumbuhan, perkembangan, metabolisme, dan fungsi lain di tingkat sel maupun jaringan .

Kandungan informasi DNA, materi genetik, terdapat dalam bentuk urutan nukleotida yang spesifik di sepanjang untai DNA. Tetapi bagaimana informasi tersebut dihubungkan dengan sifat-sifat yang diwarisi suatu organisme? Atau dengan kata lain, apa yang sebenarnya diutarakan oleh gen? Dan bagaimana pesan tersebut diterjemahkan oleh sel ke dalam sifat yang spesifik, seperti rambut coklat atau tipe golongan darah A? Ingat kembali kacang ercis Mendel. Salah satu karakter yang dipelajari pada kacang ercis adalah panjang batang.

Variasi dalam satu gen tunggal menentukan perbedaan antara varietas (tanaman) kacang ercis yang tinggi dan yang kerdil. Mendel tidak mengetahui dasar fisiologis dari perbedaan fenotipik tersebut, namun para ahli tumbuhan menjelaskan sebagai berikut: Kacang yang kerdil kekurangan hormon pertumbuhan yang disebut geberrelin, yang merangsanga pertumbuhan normal pada batang. Kacang yang kerdil jika diberi hormone giberelin akakn menunjukkan perumbuhan yang normal. Apa yang menyebabkan kacang yang kerdil tidak dapat mensintesis hormon giberelin sendiri? Tanaman tersebut ternyata tidak mempunyai suatu protein penting, yaitu suatu enzim yang diperlukan untuk sintesis hormon giberelin.Contoh di atas menggambarkan bahasan utama dari sintesis protein. Oleh karena pentingnya sintesis protein bagi fungsi dan fisiologi tubuh, maka disusunlah makalah sederhana ini untuk membantu memberikan informasi mengenai sintesis protein.

 

1.2  Rumusan masalah

  • Apakah yang dimaksud dengan sintesa atau sintesis protein
  • Bagaimanakah proses dari replikasi DNA
  • Bagaimanakah proses dari Transkripsi dan Translasi DNA
  • Bagaimanakah proses dari siklus urea

1.3  Tujuan

  • Dapat mengetahui apakah yang dimaksud sintesa atau sintesis protein
  • Dapat mengetahui bagaimanakah proses dari replikasi DNA
  • Dapat mengetahui bagaimanakah proses dari Transkripsi Translasi DNA
  • Dapat mengetahui bagaimanakah proses dari siklus urea

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAB II

TINJAUAN PUSTAKA

 

 

2.1 Pengertian Protein

 

Protein adalah senyawa organik kompleks dengan berat molekul tinggi, protein merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Protein mengandung molekul karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus (wikipedia). fungsi utama protein Sebagai enzim, Alat pengangkut dan penyimpan Misalnya hemoglobin mengangkut oksigen dalam eritrosit sedangkan mioglobin mengangkut

oksigen dalam otot,penunjang mekanis, Media perambatan impuls syaraf misalnya berbentuk reseptor, dan Pengendalian pertumbuhan.

 

 

Secara singkat penjelasan tentang protein sebagai berikut :

Protein  yaitu Polimerisasi asam amino

Fungsi protein secara singkat yaitu sebagai : katalitik (enzim), kontraksi, pengatur gena, pencegahan, hormon, struktural, transport.

Asam amino merupakan: bagian-bagian dari protein. atau kata lain asam amino akan membentuk protein.

ikatan-ikatan kuat pada protein : peptida, disulfide dan ikatan lemah : hidrogen, ionik (garam), van der waals (hidrofobik).

 

Sifat-sifat umum dari protein yaitu :

REAKSI WARNA :

Asam amino : Ninhidrin

Protein : Biuret

 

DENATURASI protein :

Perubahan sifat protein sehingga tidak alamiah lagi /kerusakan protein. sebab sebab denaturasi protein yaitu :

secara fisis : dikocok, sinar, dingin, panas

secara kimiawi : + asam, basa, organik

Pada denaturasi : ikatan lemah hilang ikatan kuat masih

 

Klasifikasi protein berdasar sifat protein :

1. Kelarutan : albumin, globulin, fibrinogen

2. Bentuk : globuler, fibrosa

3. Sifatnya dengan elektroforesis

4. Sedimentasi : VLDL, IDL, LDL, HDL.

5. Imunologis : Ig A, D, E, G, M.

6. Struktur tiga dimensi : primer, sekunder, tertier, kuarterner

7. Fungsi biologis : struktural, enzim

 

Untuk mengetahui kecukupan protein yaitu dengan  mengukur keseimbangan nitrogen.

Keseimbangan nitrogen : perbedaan antara N yang masuk : keluar

Positif : Masuk > keluar contoh anak sedang tumbuh, ibu hamil

Negatif : Masuk < keluar contohnya pasien setelah operasi, kanker lanjut, kwashirkor, marasmus, makan protein.

 

ASAM AMINO

asam amino akan membentuk protein melalui proses tranlasi di dalam sel. atau asam amino adalah bagian penyusun dari protein.

- Asam amino esensiil yaitu asam amino yang tidak dapat disintesis oleh tubuh manusia. tetapi didapatkan dari makanan (tumbuhan dan hewan)

- Sifat : Asam amino di alam ± 300 macam yang menyusun protein (manusia, hewan, tumbuhan) = 20 macam asam amino esensial

- Rumus asam amino : Dua gugus dapat mengalami ionisasi : – COOH (asam) dan -NH2 basa.

 

 

 

 

 

2.2 Struktur Protein

Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat):

  • struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Frederick Sanger merupakan ilmuwan yang berjasa dengan temuan metode penentuan deret asam amino pada protein, dengan penggunaan beberapa enzim protease yang mengiris ikatan antara asam amino tertentu, menjadi fragmen peptida yang lebih pendek untuk dipisahkan lebih lanjut dengan bantuan kertas kromatografik. Urutan asam amino menentukan fungsi protein, pada tahun 1957, Vernon Ingram menemukan bahwa translokasi asam amino akan mengubah fungsi protein, dan lebih lanjut memicu mutasi genetik.

 

  • struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:
    • alpha helix (α-helix, “puntiran-alfa”), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;
    • beta-sheet (β-sheet, “lempeng-beta”), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
    • beta-turn, (β-turn, “lekukan-beta”); dan
    • gamma-turn, (γ-turn, “lekukan-gamma”).
    • struktur tersier yang merupakan gabungan dari aneka ragam dari struktur sekunder. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener.
    • contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.

Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa molekular dengan spektrometri massa.

Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR) Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.

Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.

2.3 Fungsi protein

Protein berperan penting dalam struktur dan fungsi semua sel mkahluk hidup dan virus. Protein memiliki berbagai fungsi seperti :

  1. Protein merupakan enzim atau subunit enzim  , missal ribonuklease , tripsin.
    1. Protein berperan dalam fungsi structural atau mekanis , missal protein yang membentuk batang dan sendi ketoskerlileton.
    2. Protein juga terlibat dalam system kekebalan (imun) sebagai antibody missal Trombin.
    3. Protein sebagai system pengendali dalam bentuk hormone , missal insulin,hormone tumbuh atau auksin
    4. Protein sebagai komponen penyimpan atau nutrient,missal kasein(susu),ovalgumin(telur),gliadin(gandum) dan transportasi hara tumbuhan.
    5.  Protein sebagai salah satu sumber gizi dan berperan sebagai sumber asam amino bagi organism yang tidak dapat membentuk asam amino sendiri .
    6. Pada organisme lain protein memiliki fungsi lain seperti monelin , pada suatu tanaman yang memiliki rasa manis.

Ciri-ciri tumbuhan yang kekurangan protein yaitu :

  1. Tanaman tumbuh kerdil
  2. Daun menguning karena kekurangan klorofil,lebih lanjut mongering dan rontok
  3. Tulang-tulang dibawah permukaan daun tampak pucat
  4. Pertumbuhan tanaman lambat kerdil dan lemah
  5. Produksi bunga dan biji rendah
  6. Jaringan tanaman mengering dan mati.

BAB III

PEMBAHASAN

 

3.1 Sintesis protein.

Protein mempunyai peranan penting dalam organisasi struktural dan fungsional dari sel. Protein struktural menghasilkan beberapa komponen sel dan beberapa bagian diluar sel seperti kutikula,serabut dan sebagainya. Protein fungsional (enzim dan hormon) mengawasi hamper semua kegiatan metabolisme , biosintesis, pertumbuhan, pernapasan dan perkembangbiakan dari sel. Namun demikian sebuah sel tidak mungkin membuat protein yang dibutuhkan oleh individu yang bersel banyak. Sintesis protein adalah proses pembentukan protein dari monomer peptida yang diatur susunannya oleh kode genetik. Sintesis protein dimulai dari anak inti sel, sitoplasma dan ribosom.

Sintesis protein melibatkan DNA sebagai pembuat rantai polipeptida. Meskipun begitu, DNA tidak dapat secara langsung menyusun rantai polipeptida karena harus melalui RNA. Seperti yang telah kita ketahui bahwa DNA merupakan bahan informasi genetik yang dapat diwariskan dari generasi ke generasi. Informasi yang dikode di dalam gen diterjemahkan menjadi urutan asam amino selama sintesis protein. Informasi ditransfer secara akurat dari DNA melalui RNA untuk menghasilkan polipeptida dari urutan asam amino yang spesifik. Menurut (Suryo, 2008:59-61) DNA merupakan susunan kimia makromolekular yang komplek, yang terdiri dari tiga macam molekul yaitu : Gula pentose yang dikenal sebagai deoksiribosa, Asam pospat, dan Basa nitrogen, dibedakan atas dua tipe dasar yaitu : pirimidin {sitosin (S) dan timin (T)} dan purin {adenine (A) dan guanine (G)}.

Suatu konsep dasar hereditas yang mampu menentukan ciri spesifik suatu jenis makhluk menunjukkan adanya aliran informasi bahan genetik dari DNA ke asam amino (protein). Konsep tersebut dikenal dengan dogma genetik. Tahap pertama dogma genetik dikenal sebagai proses transkripsi DNA menjadi mRNA. Tahap kedua dogma genetik adalah proses translasi atau penerjemahan kode genetik pada RNA menjadi urutan asam amino. Dogma genetik dapat digambarkan secara skematis sebagai berikut.

DNA transkripsi RNA translasi Protein

 

3.2 Proses Replikasi DNA                                    

Replikasi adalah proses duplikasi DNA secara akurat. genom manusia pada satu sel terdiri sekitar 3 milyar dan pada saat replikasi harus diduplikasi secara akurat (persis tidak boleh ada yang salah). Replikasi adalah transmisi vertical (dari sel induk ke sel anak supaya informasi genetik yang diturunkan sama dengan sel induk). Replikasi hanya terjadi pada fase S (pada mamalia), Replikasi terjadi sebelum sel membelah dan selesai sebelum fase M.

Salah satu sumber kesalahan DNA adalah pada kesalahan replikasi yang dipengaruhi oleh berbagai factor, diantaranya karena kondisi lingkungan dan kesalahan replikasi sendiri sehingga menyebabkan terjadinya mutasi. Supaya replikasi sel dari generasi ke generasi tidak terjadi kesalahan maka perlu ada repair DNA. Selain karena kesalahan replikasi, DNA juga sangat rentan terhadap bahan kimia, radiasi maupun panas (hal yang dapat menyebabkan mutasi pada DNA pada saat replikasi).

Replikasi terjadi dengan proses semikonservatif karena semua DNA double helix. Hasil replikasi DNA double strand. Kedua DNA parental strand bisa menjadi template yang berfungsi sebagai cetakan untuk proses replikasi: Semikonservaative process. Primer strand : Pada 3’ dia akan melepaskan 2P dipakai sebagai energy untuk menempelkan, tetapi pada 5’ P tidak bisa dilepas karena ketiga P dibutuhkan sehigga tidak ada energy sehingga tidak pernah terjadi sintesis dari 3’-5’, tetapi dari 5’-3’, jadi yang menambah selalu ujung 3’ .

 

 

 

 

Perbedaan Replikasi DNA dan Trankripsi DNA yaitu :

 

Enzim yang berperan dalam proses transkripsi dan replikasi berbeda Pada proses transkripsi, enzim yang berperan RNA polymerase. transkripsi DNA : terjadi pada saat akan terjadi sintesis protein (ekspresi gen); yang dipakai cetakan hanya salah satu untai DNA(3’-5’)

replikasi DNA : sebelum fase mitosis (fase S) dalam siklus sel; kedua untai induk dipakai sebagai cetakan untuk di replikasi.

 

DNA polymerase

 

Pada proses replikasi DNA terdapat enzim sentral, yaitu DNA polymerase. Pada proses replikasi, DNA polymerase hanya bisa menempel pada gugus OH (hidroksil) dimana gugus OH hanya ada pada ujung 3’ sedangkan ujung 5’ adalah ujung fosfat. (ciri utama DNA polymerase). Ciri kedua: DNA polymerase tidak bisa mensintesis/ menempelkan DNA ke pasangan-nya kalau tidak ada primer (lokomotif). Sifat dari DNA polymerase dia hanya bisa mensintesis DNA dari arah 5’-3’ sehingga pertumbuhan dari 5’-3’ karena penambahan pada ujung 3’, dimana pada ujung 3’ ada ujung hidroksil.

Ciri lain DNA polymerase: membutuhkan primer, tidak bisa mensintesis DNA tanpa adanya primer, primer yang dipakai adalah RNA (sekitar 4-5 basa dan dilanjutkan DNA). DNA yang dibutuhkan adalah DNA primase untuk meletakkan RNA pada tempatnya. DNA primase untuk mensintesis RNA sebagai lokomotif (4-5 basa). Bila lokomotif sudah jadi maka akan di-take over oleh DNA polymerase, dan yang ditambahkan adalah DNA.

Pada Proses replikasi di butuhkan titik awal (replication origin) biasa di singkat ORI. Contoh pada plasmid (prokariot), terdapat proses replikasi yang dimulai pada replication origin dan mengembang sampai dihasilkan 2 plasmid yang sama persis. Tetapi pada eukariot (mamalia) lebih kompleks tetapi tetap membutuhkan replication origin.

Pada mamalia ada beberapa replication origin (replication bubble) yang akan bergabung satu sama lain. DNA harus terbuka dahulu baru bisa digandakan. Origin replication disebut sebagai unique sequence yang merupakan pertanda sebagai tempat proses/titik mulai terjadinya replikasi, dimana ada protein tertentu yang akan mengenali sequence. Pada bakteri (prokariot) hanya butuh satu titik ORI (origin of replication) sedangkan pada mamalia (eukariot) butuh beberapa ORI karena kalau hanya 1 ORI akan butuh waktu 3 minggu untuk mereplikasi 3 milyard DNA. Sehingga pada mamalia ada 30.000 titik ORI yang bekerja secara bersamaan sehingga fase S untuk replikasi hanya butuh beberapa jam saja.

Untuk replikasi perlu sequence tertentu yaitu yang disingkat (ACS) merupakan urutan basa yang sangat terjaga karena urutan basa tersebut dikenali oleh protein Origin Recognition Complex (ORC) sehingga bila ORC mengenali sequence maka replikasi dapat dimulai. ORI lebih global sedangkan ACS sudah pada sequence (pada urutan basa tertentu). Replikasi terjadi pada fase S sedangkan transkripsi bisa terjadi pada fase S atau G1 dimana terjadi sintesis protein maka bisa terjadi transkripsi.

Saat awal akan di mulainya repliaksi, pada G1 akhir ORC mengenali sequence ACS, kemudian ada molekul lain, juga helikase yang membentuk pre-replicative complex (pre-RC). selanjutnya pada fase S degradasi fosporilasi ORC, degradasi fosforilasi Cdc6 maka terbentuk bubble replication. Helikase membuka pilinan, topoisomerase yang memotong pada titik tertentu.

secara singkat dalam siklus sel : Pada fase G2/M sudah ada 2 copy. Pada fase G1 persiapan,

S proses replikasi, G2/M sudah selesai

 

 

 

Proses replikasi DNA

 

Pertama adanya replication origin, kemudian pembukaan local DNA helix dan adanya RNA primer synthesis. Replikasi:> ORC menempel pada ACS (ORI) :> sehingga pilinan membuka dengan bantuan helikase. Helikase akan menempel untuk membuka pilinan (helix). DNA double helix (bentuk terpilin). Untuk mereplikasi bila bentuknya terpilin tidak akan pernah bisa sehingga perlu dibuka pilinannya. Bila membuka pilinan pada salah satu ujung maka ujung yang lain akan semakin kuat pilinannya sehingga perlu daerah tertentu yang dipotong untuk membuka pilinan tesebut yang dilakukan oleh helikase. Perlu DNA primase untuk membuat RNA primer sintesis, karena DNA polymerase tidak bisa mensintesis tanpa ada primer.

Kemudian terjadi proses replikasi. Karena arah DNA anti parallel maka perlu Leading-strand dan lagging strand. Dari ORI didapatkan 2 replication fork.Ada ORI dan helikase yang membuka pilinan terus sampai terbentuk replication bubble.

 

Proses replikasi yang di perlukan utama:

1. ORI

2. Helikase

3. Replication bubble

 

Selanjutnya perlu primase untuk membuka primary. Merah RNA, Biru DNA. Bubble semakin besar, replikasi berlanjut dan 1 ORI akan membentuk 2 replication fork.

 

Replication fork pada plasmid

Terdapat 2 parental strand (run occusite direction) yang bersifat antiparalel: 5’-3’ dan 3’-5’. DNA polymerase hanya mensintesis/mempolimerasi dari arah 5’-3’. Satu strain bisa secara kontinyu disintesis yaitu yang 5’-3 (leading strain). Sementara yang 3’-5’ tidak bisa dibentuk, tetapi tetap harus dibentuk dengan 5’-3’, sehingga perlu satu strain yang terbentuk dari small discontinue peaces yang disebut sebagai lagging strain. Small peaces disebut okazaki fragmen.

Pada leading strand karena arahnya sudah dari 5’-3’ maka tinggal menambah saja. Sedangkan pasangannya (lagging strain) karena arahnya 3’-5’ maka hanya diam, tetapi pada titik tertentu akan ditambahkan primase lagi dan akan mensintesis lagi dari arah 5’-3’ (okazaki fragmen: fragmen2 potongan kecil yang terjadi pada saat replikasi pada lagging strain)-> Pada lagging strand arahnya dari 3’-5’.

Okazaki fragment: fragment potongan kecil pada saat replikasi yang terjadi pada lagging strand template. Yang terjadi pd Okazaki fragment (OF): kita punya RNA primer sehingga di OF ada RNA-DNA hybrid. Tetapi RNA harus dibuang oleh RNase H. Setelah itu untuk menggantikan RNA dibutuhkan polymerase delta (delta) yang bisa bersifat exonuclease tetapi juga bisa bersifat endonuclease, yaitu mereplace atau menempatkan dNTP. Pada saat RNA dibuang maka akan digantikan dengan DNA polymerase delta yang baru sampai hilang sama sekali. Tetapi masih belum lengkap karena masih ada celah sehingga perlu DNA ligase untuk menempelkan. Akhirnya diperoleh 2 strain yang sama persis.

 

Protein yang dibutuhkan dalam replication fork yaitu:

 

- Helicase: fungsinya untuk membuka (unwinding) parental DNA

- Single-stranded DNA-binding protein: untuk menstabilisasi unwinding, untuk mencegah DNA yang single-stranded agar tetap stabil (tidak double straded lagi).

- Topoisomerase: untuk memotong (breakage) pada tempat-tempat tertentu.

DNA Polimerase yang memiliki DNA single-strand binding protein monomer yang bertugas untuk mencegah supaya DNA tidak hanya menempel dengan lawannya tetapi juga bisa membentuk hairpins.

Karena sudah terbuka sehingga ada basa-basa tertentu yang saling berpasangan sehingga terbentuk hairpins. Supaya tidak terbentuk hairpins maka didatangkan single strand binding protein supaya tetap lurus dan tidak berbelok-belok.Topoisomerase, cirinya memotong DNA pada tempat tertentu sehingga mudah untuk memutar karena sudah dipotong. Tugasnya adalah memasangkan kembali DNA yang terpotong.

 

 

Protein aksesori:

Brace protein, : Replication factor C (RFC), supaya DNA polimerasenya menempelnya stabil (tidak mudah terlepas dari DNA template).

Sliding-clamps protein, supaya kedudukannya stabil dan tidak goyang2.

Proses pada leading dan lagging strand berlangsung secara bersamaan, tetapi proses pada lagging bertahap. Ada DNA polimerase dan sliding clamps. Sintesis terjadi pada leading strand terlebih dahulu. Pada tahap tertentu DNA primase akan ditambahkan sehingga clamps-nya datang lagi. Setelah proses replikasi selesai maka RNA akan segera dibuang digantikan dengan DNA yang baru.

Perangkat untuk replikasi: DNA polimerasi, brace, clamp, DNA helicase, single-strand binding protein, primase, topoisomerase.Setelah direplikasi ujung DNA harus ada telomere (ujung DNA). Bila tidak ada telomere maka kromosom akan saling menempel sehingga kromosom tidak 46 tetapi dalam bentuk gandeng2 (tidak diketahui).

 

Chromosome end:

Pada lagging strand, di akhir replikasi ujungnya akan dihilangkan, RNA juga akan dihilangkan, sehingga hasil replikasi menjadi lebih pendek. Hal ini terjadi karena menggunakan primer RNA untuk proses replikasi, dan RNA primer setelah replikasi harus dibuang dan tidak bisa digantikan. Untuk mengatasinya maka diadakan telomerase yang dibuat berkali-kali. (slide 76: TTGGGGTTGGGTTGGGG). Telomer dibuat oleh enzim telomerase. Telomer: ujung yang merupakan non coding DNA sehingga kalau memendek tidak akan menjadi masalah karena tidak mengkode apapun. Telomer diadakan untuk mengantisipasi pada saat replikasi karena DNA akan memendek. EXTENDS 3’ PRIMARY GENE –> TELOMERE, dan enzim yang membuatnya : telomerase. Semua sel selain stem sel tidak punya telomere.

Pada saat sel replikasi maka akan selalu memendek. Sampai pada suatu titik tertentu yang merupakan signal bagi sel untuk berhenti membelah. Karena kemampuan sel untuk membelah dibatasi oleh panjangnya telomerase. Pada saat telomere memendek sampai batas tertentu maka akan memberikan sinyal bagi sel untuk berhenti membelah. Sedangkan pada stem sel yang memiliki telomerase, maka kemampuan membelahnya tidak terbatas karena pada saat telomere habis maka telomerase akan membentuk telomere baru. Hal ini yang dimanfaatkan oleh sel kanker karena sel kanker memiliki telomerase sehingga sel kanker dapat terus membelah. Manusia memiliki kemampuan replikasi sel yang terbatas karena keterbatasan telomere, shg bila telomere habis sel akan berhenti membelah.

 

 

3.3 Pengertian Transkripsi dan Translasi

Gen memberi perintah untuk membuat protein tertentu. Tetapi gen tidak membangun protein secara langsung. Jembatan antara DNA dan sintesis protein adalah RNA. RNA secara kimiawi serupa dengan DNA, terkecuali bahwa RNA mengandung ribose, bukan deoksiribosa, sebagai gulanya dan memiliki basa nitrogen urasil, dan bukan timin.

Transkripsi merupakan sintesis RNA berdasarkan arahan DNA. Kedua asam nukleat menggunakan bahasa yang sama, dan informasinya tinggal ditranskripsikan atau disalin, dari satu molekul ke molekul lain. Molekul RNA yang dihasilkan merupakan transkrip penuh dari instruksi-instruksi pembangun-protein dari gen itu. Jenis molekul RNA ini disebut RNA mesenjer (mRNA), karena molekul ini membawa pesan dari DNA ke peralatan pensintesis-protein dari sel tersebut.

Translasi merupakan sintesis polipeptida yang sesungguhnya, yang trejadi berdasarkan arahan mRNA. Selama tahapan ini terdapat perubahan bahasa: Sel tersebut harus menerjemahkan (mentranslasi) urutan basa molekul mRNAke dalam urutan asam amino polipeptida. Tempat-tempat translasi ini ialah ribosom, partikel kompleks yang memfasilitasi perangkaian secara teratur asam amino menjadi rantai polipeprtida.

Walaupun mekanisme dasar transkripsi dan translasi serupa untuk prokariota dan eukariota, terdapat suatu perbedaan penting dalam aliran informasi genetik di dalam sel-sel tersebut. Karena bakteri tidak memiliki nukleus, DNA-nya tidak tersegregasi dari ribosom dan perlengkapan pensintasis-protein lainnya. Transkripsi dan translasi dikopel (dipasangkan), dengan ribosom menempel pada ujung depan molekul mRNA sewaktu transkripsi masih terus berlangsung.

Sebaliknya, sel eukariotik, selubung nukleus memisahkan transkripsi dan translasi dalam ruang dan waktu. Transkripsi terjadi di nukleus, dan mRNA dikirim ke sitoplasma, di mana translasi terjadi. Tetapi sebelum mRNA itu meninggalkan nukleus, transkrip-transkrip RNA eukariotik dimodifikasi dengan berbagai cara untuk menghasilkan mRNA akhir yang fungsional. Dengan demikian, dalam proses dua-langkah ini, transkrip gen eukariotik menghasilkan pra-mRNA, dan pemrosesan RNA menghasilkan mRNA akhir.

 

Gambar 1. Perbedaan sintesis protein (a) prokariotk dan (b) eukariotik

 

3.4  Proses siklus urea

Pada eukariota, siklus urea (bahasa Inggris: urea cycle, ornithine cycle) merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea. Siklus ini ditemukan pertama kali oleh Hans Krebs dan Kurt Henseleit pada tahun 1932.

Pada mamalia, siklus urea terjadi di dalam hati, produk urea kemudian dikirimkan ke organ ginjal untuk diekskresi. Dua jenjang reaksi pada siklus urea terjadi di dalam mitokondria. Ringkasan reaksi siklus urea adalah:

Amonia

Amonia merupakan produk dari reaksi deaminasi oksidatif yang bersifat toksik. Pada manusia, kegagalan salah satu jenjang pada siklus urea dapat berakibat fatal, karena tidak terdapat lintasan alternatif untuk menghilangkan sifat toksik tersebut selain mengubahnya menjadi urea. Defisiensi enzimatik pada siklus ini dapat mengakibatkan simtoma hiperamonemia yang dapat berujung pada kelainan mental, kerusakan hati dan kematian. Sirosis pada hati yang diakibatkan oleh konsumsi alkohol berlebih terjadi akibat defisiensi enzim yang menghasilkan Sarbamil fosfat pada jenjang reaksi pertama pada siklus ini.

Ikan mempunyai rasio amonia yang rendah di dalam darah, karena amonia diekskresi sebagai gugus amida dalam senyawa glutamina. Reaksi hidrolisis pada glutamina akan menkonversinya menjadi asam glutamat dan melepaskan gugus amonia.Sedangkan manusia hanya mengekskresi sedikit sekali amonia, yang dikonversi oleh asam di dalam urin menjadi ion NH4+, sebagai respon terhadap asidosis karena amonia memiliki kapasitas seperti larutan penyangga yang menjaga pH darah dengan menetralkan kadar asam yang berlebih.

Urea

Urea merupakan zat diuretik higroskopik dengan menyerap air dari plasma darah menjadi urin. Kadar urea dalam darah manusia disebut BUN (bahasa Inggris: Blood Urea Nitrogen). Peningkatan nilai BUN terjadi pada simtoma uremia dalam kondisi gagal ginjal akut dan kronis atau kondisi gagal jantung dengan konsekuensi tekanan darah menjadi rendah dan penurunan laju filtrasi pada ginjal. Pada kasus yang lebih buruk, hemodialisis ditempuh untuk menghilangkan larutan urea dan produk akhir metabolisme dari dalam darah.

Pada hewan seperti burung dan reptil yang harus mencadangkan air di dalam tubuhnya, nitrogen diekskresi sebagai asam urat yang bersenyawa dengan sedikit kandungan air. Sedang pada manusia, asam urat tidak disintesis dari amonia, melainkan dari adenina dan guanina yang terdapat pada berbagai nukleotida. Asam urat biasanya diekskresi dalam jumlah sedikit, melalui urin. Kadar asam urat dalam darah dapat meningkat pada penderita gangguan ginjal dan leukimia. Bentuk garam dari asam urat dapat mengendap menjadi batu ginjal maupun batu kemih. Pada artritis, endapan garam dari asam urat terjadi pada tulang rawan yang terdapat pada persendian.

 Jenjang reaksi

Sarbamil fosfat sintetase, sebuah enzim, merupakan katalis pada reaksi dengan substrat NH3, CO2 dan ATP menjadi sarbamil fosfat,

yang kemudian diaktivasi oleh asam N-asetilglutamat yang terbentuk dari asam glutamat dan asetil-KoA dengan enzim N-asetilglutamat sintetase. N-asetilglutamat merupakan regulator yang penting dalam ureagenesis selain arginina, kortikosteroid dan protein yang lain.

Reaksi kondensasi yang terjadi pada ornitina lantas memicu konversi sarbamil fosfat menjadi sitrulina dengan bantuan enzim ornitina transarbamilase.Kemudian sitrulina dilepaskan dari dalam matriks menuju sitoplasma, dan kondensasi terjadi dengan asam aspartat dan enzim argininosuksinat sintetase, membentuk asam argininosuksinat, yang kemudian diiris oleh argininasuksinat liase menjadi asam fumarat dan arginina. Asam fumarat akan dioksidasi dalam siklus sitrat di dalam mitokondria, sedangkan arginina akan teriris menjadi urea dan ornitina dengan enzim arginase hepatik. Baik argininosuksinat liase maupun arginase diinduksi oleh rasa lapar, dibutiril cAMP dan kortikosteroid.

BAB IV

 PENUTUP

 

 

5.1 Kesimpulan

 

Sintesa protein adalah penyusunan amino pada rantai polipeptida. Replikasi adalah proses duplikasi DNA secara akurat . Replikasi terjadi dengan proses semikonservatif karena semua DNA double helix. Transkripsi merupakan sintesis RNA berdasarkan arahan DNA. Translasi merupakan sintesis polipeptida yang sesungguhnya, yang trejadi berdasarkan arahan mRNA. Siklus urea merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea.

 

 

5.2 Saran

Semoga makalah ini dapat menjadikan tambahan ilmu bagi pembaca pada umumnya dan penulis pada khususnya . Namun , penulis juga membutuhkan kritik yang membangun untuk menjadikan tambahan ilmu bagi poenulisnya .

 

 

DAFTAR PUSTAKA

 

Almatsier, S..2003. Prinsip Dasar Ilmu Gizi.Jakarta : Gramedia

 

McGilvery,Robert W.,1996.Biokimia Suatu Pendekatan Fungsional.Surabaya : Airlangga University Press.

 

Poedjiadi,Anna.2006.Dasar-Dasar Biokimia.Jakarta : Universitas Indonesia

 

Schumm,Dorothy E..1993.Intisari Biokimia.Jakarta : Binarupa Aksara

 

Suwandito, Tri Martini, METABOLISME PROTEIN DAN ASAM AMINO, www.google.com, diakses 8 oktober 2008.

 

Tri Rini Nuringtyas, ASAM AMINO DAN PROTEIN, www.google.com, diakses 8 oktober 2008.

 
 

Leave a Reply

 
*