RSS
 

Proses Pertumbuhan Tanaman

11 May

Fotosintesis

Fotosintesis adalah suatu proses biokimia yang dilakukan tumbuhanalga, dan beberapa jenis bakteri untuk memproduksi energi terpakai (nutrisi) dengan memanfaatkan energi cahaya. Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi. Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi. Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi. Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.

Proses Fotosintesis

1.Cahaya matahari bereaksi dengan klorofil, dan memecah air menjadi komponen dasarnya. Reaksi ini mengeluarkan oksigen; dan yang jauh lebih penting ialah bahwa reasi ini “memuati” dua koenzim, yang satu dengan energi kimia dan yang lain dengan hydrogen.

2.Anak panah menggambarkan gerakan koenzim yang bermuatan ini.

3.Yang sedang menunggu ialah karbondioksida dalam senyawa penerima. Di sini ada satu koenzim yang bermuatan melepaskan muatan energinya untuk menggerakkan penyatuan penting antara muatan hidrogen koenzim yang satu dengan karbon yang menunggu. Karbohidrat yang dihasilkannya menjadi gula, hasil dasar fotosintesis.

4.Kedua koenzim yang muatannya dibongkar itu kemudian kembali untuk dimuati lagi dan mengulang daur tadi.

Fase Fotosintesis

Reaksi Terang

Tahap pertama dari sistem fotosintesis adalah reaksi terang, yang sangat bergantung kepada ketersediaan sinar matahari. Reaksi terang merupakan penggerak bagi reaksi pengikatan CO2 dari udara. Reaksi ini melibatkan beberapa kompleks protein dari membran tilakoid yang terdiri dari sistem cahaya (fotosistem I dan II), sistem pembawa elektron, dan komplek protein pembentuk ATP (enzim ATP sintase). Reaksi terang mengubah energi cahaya menjadi energi kimia, juga menghasilkan oksigen dan mengubah ADP dan NADP+ menjadi energi pembawa ATP dan NADPH.

Reaksi terang terjadi di tilakoid, yaitu struktur cakram yang terbentuk dari pelipatan membran dalam kloroplas. Membran tilakoid menangkap energi cahaya dan mengubahnya menjadi energi kimia. Jika ada bertumpuk-tumpuk tilakoid, maka disebut grana.

Secara ringkas, reaksi terang pada fotosintesis ini terbagi menjadi dua, yaitu fosforilasi siklik dan fosforilasi nonsiklik. Fosforilasi adalah reaksi penambahan gugus fosfat kepada senyawa organik untuk membentuk senyawa fosfat organik. Pada reaksi terang, karena dibantu oleh cahaya, fosforilasi ini disebut juga fotofosforilasi.

FOTOFOSFORILASI SIKLIK FOTOFOSFORILASI NONSIKLIK
Hanya melibatkan fotosistem I Melibatkan fotosistem I dan II
Menghasilkan ATP Menghasilkan ATP dan NADPH
Tidak terjadi fotolisis air Terjadi fotolisis air untuk menutupi kekurangan elektron pada fotosistem II

Pigmen yang Terlibat dalam Fotosintesis

Klorofil

Klorofil adalah kelompok pigmen fotosintesis yang terdapat dalam tumbuhan, menyerap cahaya merah, biru dan ungu, serta merefleksikan cahaya hijau yang menyebabkan tumbuhan memperoleh ciri warnanya. Terdapat dalam kloroplas dan memanfaatkan cahaya yang diserap sebagai energi untuk reaksi-reaksi cahaya dalam proses fotosintesis.

Klorofil A merupakan salah satu bentuk klorofil yang terdapat pada semua tumbuhan autotrof. Klorofil B terdapat pada ganggang hijau chlorophyta dan tumbuhan darat. Klorofil C terdapat pada ganggang coklat Phaeophyta serta diatome Bacillariophyta. Klorofil d terdapat pada ganggang merah Rhadophyta. Akibat adanya klorofil, tumbuhan dapat menyusun makanannya sendiri dengan bantuan cahaya matahari.

Karotena

Istilah karotena digunakan untuk menunjuk ke beberapa senyawa yang berhubungan yang memiliki formula C40H56. Karotena adalah pigmen fotosintesis berwarna jingga yang penting dalam fotosintesis. Zat ini membentuk warna jingga dalam wortel dan banyak buah dan sayur lainnya. Dia berperan dalam fotosintesis dengan menyalurkan energi cahaya yang dia serap keklorofil.

Secara biokimia, karotena terasuk dalam golongan terpena, yang disintesis secara biokimia dari delapan satuan isoprena. Ia dikenal dalam dua bentuk utama yang diberi karakter Yunani: alfa-karotena (α-karotena) dan beta-karotena (β-karotena). Gamma-, delta-, dan epsilon- (γ, δ, dan ε-karotena) juga dikenal dalam jumlah yang sedikit. Beta-karotena terdiri dari dua grupretinil, dan dipecah dalam mukosa dari usus kecil oleh beta-karotena dioksigenase menjadiretinol, sebuah bentuk dari vitamin A]. Karotena dapat disimpan dalam hati dan diubah menjadi vitamin A sesuai kebutuhan, sehingga ia dapat dianggap sebagai provitamin.

Dalam sel tumbuhan, karotena ditemukan di dalam plastida tersendiri yang terpisah darikloroplas, dan disebut kromoplas karotena. Organel ini tidak ditemukan pada selain tumbuhan hijau.

Reaksi Gelap

Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis. Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplas yang disebut stroma. Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang, dan CO2, yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.

Salah satu substansi penting dalam proses ini ialah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat. Jika diberikan gugus fosfat kedua dari ATP maka dihasilkan ribulosa difosfat (RDP). Ribulosa difosfat ini yang nantinya akan mengikat CO2 dalam reaksi gelap. Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi.

Faktor-faktor yang Mempengaruhi Fotosintesis

Intensitas cahaya

Laju fotosintesis maksimum ketika banyak cahaya.

Konsentrasi karbon dioksida

Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.

Suhu

Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.

Kadar air

Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.

Kadar fotosintat (hasil fotosintesis)

Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.

Tahap pertumbuhan

Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.

Respirasi

Respirasi dalam biologi adalah proses mobilisasi energi yang dilakukan jasad hidup melalui pemecahan senyawa berenergi tinggi (SET) untuk digunakan dalam menjalankan fungsi hidup. Dalam pengertian kegiatan kehidupan sehari-hari, respirasi dapat disamakan dengan pernapasan. Namun demikian, istilah respirasi mencakup proses-proses yang juga tidak tercakup pada istilah pernapasan. Respirasi terjadi pada semua tingkatan organisme hidup, mulai dari individu hingga satuan terkecil, sel. Apabila pernapasan biasanya diasosiasikan dengan penggunaanoksigen sebagai senyawa pemecah, respirasi tidak melulu melibatkan oksigen.

Respirasi Aerob

  • Memerlukan oksigen (O­2)
  • Terjadi dalam matriks mitokondria
  • Untuk pemecahan senyawa organic menjadi senyawa anorganik
  • Menghasilkan energi yang lebih besar
  • Menghasilkan 26 ATP
  • Proses respirase aerob:
  1. Glikolisis
  2. Dekarboksilasi Oksidatif
  3. Siklus Kreb’s
  4. Transfer electron

Reaksi Anaerob

  • Tidak memerlukan oksigen (O2)
  • Terjadi dalam sitoplasma
  • Untuk penguraian senyawa organic
  • Menghasilkan energi yang lebih kecil
  • Menghasilkan 2 ATP
  • Proses respirasi anaerob
  1. Fermentasi
  2. Pernafasan intramolekul

Transpirasi

Proses hilangnya air dalam bentuk uap air dari jaringan hidup tanaman yang terletak di atas permukaan tanah melewati stomata, lubang kutikula, dan lentisel. 80% air yang ditranspirasikan berjalan melewati lubang stomata, paling besar peranannya dalam transpirasi.

Perbedaan Transpirasi dengan Evaporasi

Transpirasi Evaporasi
1. Proses fisiologis atau fisika yang termodifikasi 1. Proses fisika murni
2. Diatur bukaan stomata 2. Tidak diatur bukaan stomata
3. Diatur beberapa macam   tekanan 3. Tidak diatur oleh tekanan
4. Terjadi di jaringan hidup 4. Tidak terbatas pada jaringan hidup
5. Permukaan sel basah 5. Permukaan yang menjalankannya menjadi kering

Dampak Negatif Transpirasi

  • Transpirasi dapat membahayakan tanaman jika lengas tanah terbatas, penyerapan air tidak mampu mengimbangi laju transpirasi, Ψw sel turun, Ψp menurun, tanaman layu, layu permanent, mati, hasil tanaman menurun.
  • Sering terjadi di daerah kering, perlu irigasi, meningkatkan lengas tanah, pada kisaran layu tetap – kapasitas lapangan.
  • Pengangkutan air ke daun dan difusi air antar sel
  • Penyerapan dan pengangkutan air, hara
  • Pengangkutan asimilat
  • Membuang kelebihan air
  • Pengaturan bukaan stomata
  • Mempertahankan suhu daun

Peranan Transpirasi

Mekanisme Transpirasi

Air diserap ke dalam akar secara osmosis melalui rambut akar, sebagian besar bergerak menurut gradien potensial air melalui xilem. Air dalam pembuluh xilem mengalami tekanan besar karena molekul air polar menyatu dalam kolom berlanjut akibat dari penguapan yang berlangsung di bagian atas. Sebagian besarion bergerak melalui simplas dari epidermis akar ke xilem, dan kemudian ke atas melalui arus transportasi.

Macam Transpirasi

  • Stomater : 80-90% total transpirasi
  • Kutikuler: 20% total transpirasi
  • Lentikuler : 0,1% total transpirasi
  • Faktor Dalam

Faktor yang Mempengaruhi Laju Transpirasi

  1. Stomata: jumlah per satuan luas, letak stomata (permukaan bawah atau atas daun, timbul/tenggelam), waktu bukaan stomata.
  2. Daun: berbulu/tidak, warna daun(kandungan klorofil daun), posisinya menghadap matahari secara langsung atau tidak.
  • Faktor Luar
  1. Sinar matahari

Seperti yang telah dibicarakan didepan, maka sinar menyebabkan membukanya stoma dan gelap menyebabkan tertutupnya stoma, jadi banyak sinar berarti juga mempergiat transpirasi. Karena sinar itu juga mengandung panas (terutama sinar infra-merah), maka banyak sinar berarti juga menambah panas, dengan demikian menaikkan tempratur. Kenaikan tempratur sampai pada suatu batas yang tertentu menyebabkan melebarnya stoma dan dengan demikian memperbesar transpirasi.

  1. Temperatur

Merupakan faktor lingkungan yang terpenting yang mempengaruhi transpirasi daun yang ada dalam keadaan turgor. Suhu daun di dalam naungan kurang lebih sama dengan suhu udara, tetapi daun yang kena sinar matahari mempunyai suhu 10o -20o F lebih tinggi daripada suhu udara. Pengaruh tempratur terhadap transpirasi daun dapat pula ditinjau dari sudut lain, yaitu didalam hubungannya dengan tekanan uap air di dalam daun dan tekanan uap air di luar daun. Kenaikan tempratur menambah tekanan uap di dalam daun. Kenaikan tempratur itu sudah barang tentu juga menambah tekanan uap di luar daun, akan tetapi berhubung udara di luar daun itu tidak di dalam ruang yang terbatas, maka tekanan uap tiada akan setinggi tekanan uap yang terkurung didalam daun. Akibat dari pada perbedaan tekanan ini, maka uap air akan mudah berdifusi dari dalam daun ke udara bebas.

  1. Kebasahan udara (Kelembaban udara)

Pada hari cerah udara tidak banyak mengandung uap air. Di dalam keadaan yang demikian itu, tekanan uap di dalam daun jauh lebih lebih tinggi dari pada tekanan uap di luar daun, atau dengan kata lain, ruang di dalam daun itu lebih kenyang akan uap air daripada udara di luar daun, jadi molekul-molekul air berdifusi dari konsentrasi tinggi (di dalam daun) ke konsentrasi yang rendah (di luar daun). Kesimpulannya ialah, udara yang basah menghambat transpirasi, sedang udara kering melancarkan transpirasi.

  1. Angin

Pada umumnya angin yang sedang, menambah kegiatan transpirasi. Karena angin membawa pindah uap air yang bertimbun-timbun dekat stoma. Dengan demikian, maka uap yang masih ada di dalam daun kemudian mendapat kesempatan untuk difusi ke luar. Angin mempunyai pengaruh ganda yang cenderung saling bertentangan terhadap laju transpirasi. Secara singkat dapat disimpulkan bahwa angin cenderung untuk meningkatkan laju transpirasi, baik di dalam naungan atau cahaya, melalui penyapuan uap air. Akan tetapi, di bawah sinar matahari, pengaruh angin terhadap penurunan suhu daun, dengan demikian terhadap penurunan laju transpirasi, cenderung lebih penting daripada pengaruhnya terhadap penyingkiran uap air.

  1. Keadaan air dalam tanah

Tersedianya air dalam tanah adalah faktor lingkungan lain yang mempengaruhi laju transpirasi. Bila kondisi air tanah sedemikian sehingga penyediaan air ke sel-sel mesofil terhambat, penurunan laju transpirasi akan segera tampak.

Translokasi

Translokasi adalah perpindahan bahan terlarut yang dapat terjadi di seluruh bagian tumbuhan.

Mekanisme dan Pola Translokasi

Pada daun, bahan terlarut yang telah terangkut segera ditambahkan kembali dari hasil fotosintesis (phloem loading); dan bahan terlarut yang telah sampai ke limbung akan dikeluarkan dari pembuluh floem (phloem unloading). Dimanfaatkan untuk pertumbuhan atau ditimbun di organ penampung, misalnya dalam bentuk pati atau lemak. Larutan perendam pada osmometer setara dengan bagian apoplas tanaman, yakni dinding sel dan pembuluh xylem.

Material Translokasi

Fungsi floem adalah sebagai jaringan translokasi bahan organik yang terutama berisi karbohidrat. Crafts dan Lorenz (1994) mendapatkan persentase nitrogen (dalam bentuk protein) sebesar 45%. Sebenarnya gula yang menjadi linarut terbesar yang ditranslokasikan dalam cairan floem. Diantara gula ini, sukrosa yang paling banyak jumlahnya. Gula lain seperti gula rafinosa : glukosa, rafinosa, stakiosa, dan fruktosa juga ada pada gula alcohol: manitol, sorbitol, galaktitol, serta mio-inositol.

 

Leave a Reply

You must be logged in to post a comment.